Mississippi State University
Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2011

An open virtual testbed for industrial control system security
research

Bradley Galloway Reaves

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Reaves, Bradley Galloway, "An open virtual testbed for industrial control system security research” (2011).
Theses and Dissertations. 613.

https://scholarsjunction.msstate.edu/td/613

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junctlon It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
ation, please contact scholcomm@msstate.libanswers.com.

www.manharaa.com

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/613?utm_source=scholarsjunction.msstate.edu%2Ftd%2F613&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

AN OPEN VIRTUAL TESTBED FOR INDUSTRIAL CONTROL SYSTEM

SECURITY RESEARCH

By

Bradley Galloway Reaves

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

August 2011

www.manharaa.com

Copyright by
Bradley Galloway Reaves

2011

www.manharaa.com

AN OPEN VIRTUAL TESTBED FOR INDUSTRIAL CONTROL SYSTEM

SECURITY RESEARCH

By

Bradley Galloway Reaves

Approved:

Thomas Morris Yoginder Dandass

Assistant Professor of Electrical and Associate Professor of Computer
Computer Engineering Science and Engineering

(Major Professor) (Committee Member)

Rayford B. Vaughn James Fowler

Associate Vice President for Research, Professor of Electrical and
Professor of Computer Science and Engi- Computer Engineering,
neering Graduate Coordinator
(Committee Member)

Sarah A. Rajala
Dean of the James Worth Bagley College
of Engineering

www.manaraa.com

Name: Bradley Galloway Reaves

Date of Degree: August 6, 2011
Institution: Mississippi State University
Major Field: Computer Engineering
Major Professor: Dr. Thomas Morris

Title of Study: AN OPEN VIRTUAL TESTBED FOR INDUSTRIAL CONTRL
SYSTEM SECURITY RESEARCH

Pages in Study: 144

Candidate for Degree of Master of Science

ICS security has been a topic of scrutiny and research farakyears, and many
security issues are well known. However, research effedsrapeded by a lack of an
open virtual industrial control system testbed for segugsearch. This thesis describes a
virtual testbed framework using Python to create discretébed components (including
virtual devices and process simulators). This testbedsgyded such that the testbeds are
interoperable with real ICS devices and that the virtuabids can provide comparable
ICS network behavior to a laboratory testbed. Two testbedsd on laboratory testbeds
have been developed and have been shown to be interopei#bleal industrial control
system equipment and vulnerable to attacks in the same masageal system. Addition-
ally, these testbeds have been quantitatively shown tougeottaffic close to laboratory

systems (within 90% similarity on most metrics).

www.manaraa.com

DEDICATION

To Sarah.

www.manharaa.com

ACKNOWLEDGMENTS

This thesis would not be possible without the support of almemof people. | would
first like to thank my advisor, Dr. Thomas Morris, for his hepd guidance over the
years. | would also like to thank Dr. Dandass and Dr. Vaughthfeir encouragement and
helpful advice.

Discussions with Jacob Brodsky about wireless insecunty iCS security in gen-
eral were enlightening. Terry Brugger provided source coteh inspired my imple-
mentation of similarity metrics. Wei Gao’s help with maimiag the MSU ICS security
laboratory and attack code is greatly appreciated.

This material is based upon work supported by the Nationainge Foundation Grad-

uate Research Fellowship under Grant No. DEG-1125191.

www.manaraa.com

TABLE OF CONTENTS

DEDICATION e e e e i
ACKNOWLEDGMENTS e e e e e iii
LISTOFTABLES e e Vi
LISTOFFIGURES e e s e e Viii
LISTOF APPREVIATIONS e X
CHAPTER
1. INTRODUCTION e e e e e e 1
1.1 Motivation 1
1.1.1 ProblemsinICSSecurity. 1
1.1.2 Problems Faced by ICS Security Research 3
1.1.3 Need for an open testbed for ICS security development . 5
1.2 Contribution e 8
2. RELATEDWORK e 11
2.1 Industrial Control Systems L. 11
2.1.1 Programmable Logic Controllers 12
2.1.2 ICSProtocols 13
2121 Modbus 14
2122 HART. 16
2.2 Related Testbeds 16
221 MSULab e 18
2.3 Intrusion Detection Systems 0 2
231 IDSTesting e 22
24 PCSIDS 23
3. SURVEY OF ICS WIRELESS ATTACK LITERATURE 25
\Y

www.manaraa.com

3.1 IEEE802.11 e 26

3.2 |IEEE802.15.4PHY and MAC Layer 33
3.3 WirelessHART 36
3.4 ZigBee 40
3.5 ProprietaryWireless 43
3.6 Bluetooth 46
OVERVIEW OF VIRTUALTESTBED 51
4.1 Design Goals of Virtual Testbed 25
4.2 COmMpoNeNntS e e e e 54
4.2.1 Process Simulator 0oL 57
4.2.2 VirtualDevices 57
4.2.3 ConfigurationFiles 58
4.3 UseCases. i e 59
4.4 Logging o e e e 61
441 TCP/IPLogging o it it 61
4.4.2 Serial SystemlLogging o 62
4.5 Testbed Systems 64
451 Pipeline 64
452 GroundTank 65
PROCESS SIMULATORS e e 66
5.1 Design e 67
5.2 Simulated Systems 71
5.3 Howtocreate anewsimulation 72
VIRTUALICSDEVICES e 78
6.1 Design 79
6.1.1 Points 80
6.1.2 ControlLogic. 83
6.1.3 Simulatorinterface L. 84
6.1.4 ICSprotocolinterfaces 86
6.1.4.1 Modbus Implementation 88
6.2 Implementingavdev, 91
EVALUATION e e e e 93
7.1 Virtual Testbed Integration with Actual ICS Devices 94
7.1.1 IntegrationwithICSRadio. 94
7.1.2 Integrating a Virtual Devices with Actual Devices 98
v

www.manaraa.com

7.2 \Virtual Testbedunder Attack 99

7.3 Traffic Fidelity Analysis a0
7.3.1 Methodology 108
7.3.1.1 Mathematics 109
7.3.1.2 ModbusRTU Metrics 111
7.3.2 Results 113
7.3.21 Ground Tank System 114
7.3.2.2 PipelineSystem. 116
8. CONCLUSIONS e e 120
8.1 Contributions 120
8.2 Futurework. 122
REFERENCES e 124
APPENDIX
A. TIMING CALIBRATION e 130
A.1 Timing calibration method for ModbusRTU systems 131
A.2 Calibration Example: Ground Tank System 134
A.2.1 Initial Similarity Scores oL 134
A.2.2 Communicationsdelay 135
A.2.3 Message ProcessingDelay 136
A.2.4 Master Program ScanTime 137
Vi

www.manaraa.com

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

7.1

7.2

7.3

7.4

7.5

7.6

Al

A.2

A.3

A4

LIST OF TABLES

Sample Modbus FunctionCodes 15
IDS performance metrics 21
IEEE 802.11 Vulnerabilities, 27
IEEE 802.15.4 Vulnerabilities, 33
WirelessHART Vulnerabilities 37
ZigBee Vulnerabilities 40
Example Proprietary WirelessSystems 44
Proprietary Wireless System Vulnerabilites 45
Similarity Metrics for Ground Tank (Off) Connected wRadios 96
Similarity Metrics for Ground Tank (Auto) Connected wRadios 97
Similarity Metrics For the Ground Tank System(Off Mode) 115
Similarity Metrics For the Ground Tank System(Auto Mpde. 116
Similarity Metrics For the Pipeline System (Auto Mode). 117
Similarity Metrics For the Pipeline System (Off Mode) 118
Ground Tank Initial Similarity Scores 135
Ground Tank Similarity Scores After Adding Baud Rated@el. 136
Ground Tank Similarity Scores After Message ProcesBelgy 141
Ground Tank Similarity Scores After Adjusting Maste8clime 144
Vil

www.manaraa.com

2.1

4.1

5.1

5.2

5.3

5.4

5.5

6.1

6.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

LIST OF FIGURES

DiagramofanICS System o 2
Testbed Architecture 55
Simulator Architecture L 68
Ground Tank EmptytoFull173
Ground Tank FulltoEmpty 14
Ground Tank Simulation Comparisons: Ground Tank Auta®&o 75
Pressures of Pipeline Systemsin AutoMode 76
Virtual Device Architecture e 80
Sample Process ControlLogic 84
Virtual Device Radio Integration Testing 95
Real Device Interoperability TestSetups 98
One Hertz Injection Attack Setup, 100
Virtual System Tank Levels During Injection Attack 102
Laboratory System Tank Levels During Injection Attack. 103
Virtual Pipeline Pressures During Radio DoS Attack 104
Laboratory Pipeline Pressures During Radio DoS Attack 105
Virtual Pipeline Pressures Received During Radio Dg&¢tion Attack . . . 106

Laboratory Pipeline Pressures Received During Rad®&/IDjection Attack . 107

viii

www.manaraa.com

A.1 Master-Slave Interarrival Distribution (Write Comntgn 138

A.2 Master-Slave Interarrival Distribution (Read Commpnd 139
A.3 Master-Slave Interarrival Distribution (Read) Afteroeessing Delay 140
A.4 Ground Tank Master-Master Interarrival Time Before AdpDelay 142
A.5 Plot of Interarrival Distribution After Calibration 143

www.manharaa.com

LIST OF APPREVIATIONS

AES — Advanced Encryption Standard

ARP — Address Resolution Protocol

CAC — Bluetooth Channel Access Code

AES-CBC — AES Cipherblock Chaining Mode

CCA — Clear Channel Assessment

MS-CHAP — Microsoft Challenge Handshake Authenticatioat®col

CRC — Cyclic Redundancy Check

CSV — Comma Separated Value file

AES-CTR — AES Counter Mode

DCS — Distributed Control System

DMZ — DeMilitarized Zone

DNP3 — Distributed Network Protocol 3

DNS — Domain Name System

EAP — Extensible Authentication Protocol
X

www.manharaa.com

EAP-TTLS — Extensible Authentication Protocol Tunneleddsport Layer Security
ECDH — Elliptic Curve Diffie-Hellman

FHSS — Frequency Hopping Spread-Spectrum

FTP — File Transfer Protocol

GTK — Group Temporal Key

GUI — Graphical User Interface

HART — Highway Addressible Remote Transducer protocol
HMI — Human Machine Interface

HTTP — HyperText Transfer Protocol

ICS — Industrial Control System

IDS — Intrusion Detection System

IP — Internet Protocol

ISM — Industrial, Scientific, Medical RF Frequency Band
JSON — JavaScript Object Notation

LAN — Local Area Network

LAND — Local Area Network Denial attack

LEAP — Lightweight Extensible Authentication Protocol
Xi

www.manaraa.com

MAC — Medium Access Control (network layer) or Message Auatieation Code

MD5 — Message Digest 5 Hash Algorithm

MIC — Message Integrity Code

MITM — Man-in-the-Middle attack

MTU — Master Terminal Unit

NERC — North American Electric Reliability Corporation

PAC — Programmable Automation Controller

PAN — Personal Area Networks

PCAP — Packet Capture (file format)

PCS — Process Control System

PDC — Phasor Data Concentrator

PEAP — Protected Extensible Authentication Protocol

PID — Proportional-Integral-Derivative control scheme

PLC — Programmable Logic Controller

PMU — Phasor Measurement Unit

PSK — Pre-Shared Key (IEEE 802.11)

PTK — Pairwise Transient Key

Xii

www.manaraa.com

RADIUS — Remote Authentication Dial-In User Service

RC4 — Rivest Cipher 4 stream cipher

RTDS — Real Time Digital Simulator

RTU — Remote Terminal Unit

SCADA — Supervisory Control And Data Acquisition

SIFS — Short Interframe Space (IEEE 802.11)

SKKE — Symmetric-Key Key Exchange

SPAN — Switched Port Analyzer

SSID — Service Set ldentifier

SSP — Secure Simple Pairing

TCP — Transmission Control Protocol

TDMA — Time Domain Multiple Access

TKIP — Temporal Key Integrity Protocol

TTL — Time-to-Live (counter in IP headers)

UDP — User Datagram Protocol

USRP — Universal Software Radio Peripheral

VLAN — Virtual LAN
Xiii

www.manaraa.com

VPN — Virtual Private Network

WEP — Wired-Equivalent Privacy

WPA — WiFi Protected Access

WPA2 — WiFi Protected Access 2

Xiv

www.manharaa.com

CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Problemsin ICS Security

Industrial Control Systems (ICS), also known as Distridu@®ntrol Systems (DCS),
Process Control Systems (PCS), and Supervisory ContrddatalAcquisition (SCADA)
systems are computer systems used to monitor control @iysiocesses in manufac-
turing, chemical processing, electric generation, eled¢tansmission and distribution,
water/wastewater systems, and other industries. PCSctolia from remote facilities
about the state of the physical process and send commanaisttoldhe physical process.
Process control system communications are charactenzatimly machine-to-machine
communications in point-to-point links and networks catiag of mainly computation-
ally limited devices.

ICS security has been a topic of scrutiny and research fe@rakyears, and many secu-
rity issues are well known[21, 22]. First, ICS often have ipsecurity policies, including
not enforcing strong, secret passwords for individual sis&econd, human-machine in-
terface software has been shown to have major flaws in uskertitation [48]. Third,

ICS communication protocols provide no mechanisms to guieeaintegrity, authenticity,

www.manaraa.com

or confidentiality of data, making injection or tamperingl@S communications possi-
ble (and in some cases, trivial). This is made worse by thetfat while historically
ICS were directly connected using serial and fieldbus pm$omew advances in Ether-
net and TCP/IP networking used in enterprise networks haeerbe integrated into ICS
networks. These advances allow previously separate IC®atailprise networks to be
bridged, allowing attackers of the enterprise network pi¢access to the ICS network
as well.

Moreover, operators are reticent to patch ICS devices ahipatrequires downtime,
and patches may break currently working systems; ICS, tietige reliability of the in-
dustrial hardware, are quite difficult to operate and mamtAs such, ICS operators are
reticent to change anything in a working system. Some IC$dswse commercial off-
the-shelf operating systems, including Microsoft Windowkese devices are vulnerable
to attacks against these operating systems in the same Waysa®©ther systems use cus-
tom embedded or real-time operating systems; these ptaprigystems are less tested for
vulnerabilities by product developers, security reseanrghand hackers, and may harbor
many common programming and design errors like buffer amed] For example, labo-
ratory testing of ICS equipment has shown some devices talperable to common TCP
SYN flood and LAND attacks; these vulnerabilities are no Emgresent in commodity
operating system network stacks.

Much of the current research focuses on TCP/IP-based netywand as such there
is an emphasis on securing so-called “routable” protocots ignoring “non-routable”
protocols. Non-routable protocols are believed to be seagainst any attacker without

2

www.manaraa.com

physical access. The NERC Ciritical Infrastructure Pradedi8] requirements show this
philosophy in action. While it is, in fact, impractical tat@atk non-routable systems that
use, for example, RS-232 connections without physical ss;aadustrial wireless sys-
tem use is becoming more and more prevalent in both routaldl@an-routable systems.
These wireless systems introduce a number of vulnerasilitiat can be exploited by
attackers.

Additionally, these wireless systems sometimes make patable systems routable,
and in all cases there is a greater risk of attack as attankdmnger need physical access
to the systems to attack them because they can be attackeddolmgical boundaries
(connection points). As an example of this, attackers may gavesdrop, or inject packets
between two wireless radios that are within a security petém even in a secure building.
This greatly complicates the concept of security perimeted even more challenges the
assumption that non-routable systems are not in need di@ulisecurity practices. This

is discussed further in Chapter 3.

1.1.2 Problems Faced by ICS Security Research

As discussed in the previous section, the development airisgpractices and tech-
niques in the realm of process control systems has laggedeelopment seen in tra-
ditional information technology. However, researcherd amustry practitioners have
taken notice of the issue and are developing best practeesye protocols[46, 32], and
intrusion detection systems to meet the security needsdoisinial control systems. Re-

searchers have explored a number of different approachesrtorming intrusion detec-

www.manaraa.com

tion in process control systems, including signature-thageromaly-based, model-based,
state-based, and hybrid techniques. These will be disdusgarther detail in the related
work. However, research efforts are hampered by a numbesoés.

First, industrial control systems are quite diverse in meknsize and topology, the
number of standard communication protocols, communinatinedia, as well as types of
process to be controlled. Presently, researchers are bieyatest their work in their own
laboratory testbeds, which are necessarily limited in armscope and not able to exhibit
the diversity seen in real-world applications.

A second issue to ICS research follows from the first: it ididift for researchers
to develop generic solutions that can be used in many diffggeocess control systems
because of their limited test systems. The solutions desligften only work given certain
assumptions about the ICS system configuration, and rep@selts can only be provided
in terms of the single system it was tested in.

Third, many of these testbeds are actually simulationsldpee in common network
simulation toolkits like OmNet++ or NS2. These are purelpgiated systems, and no
work has been done to measure the similarity of the resuttésfraffic compared to actual
ICS. Research results from these testbeds are dependemidaniental assumptions made
by the testbed designers, which may or may not hold true ictigea This limits the types
of possible research approaches and the trustworthinglss oésults.

The fourth issue is a grave problem for the scientific prac@assome cases, solu-
tions developed in one testbed are not easily distributeldt@sted in a different testbed
for comparison. This means that, at present, it is difficufjuantitatively compare differ-

4

www.manaraa.com

ent approaches directly to determine which approaches are promising and effective.

Currently, there is no “standard” test scenario for ICS sé&csolutions.

1.1.3 Need for an open testbed for ICS security development

There are two approaches to creating a testbed: laboratate-1CS with real equip-
ment and virtual testbeds. Some researchers use smaltatabpscale processes con-
trolled by ICS consisting of a few devices. Other reseachise virtual testbeds; these
consist of simulated ICS devices, and may include a simtliflatecess as well.

Laboratory scale systems have a number of advantages ocednjoavirtual systems.
First, the data will reflect realistic measurement variaithat would be present in an ac-
tual process control system. Second, the communicatiderpatand latencies will be en-
tirely accurate and not vulnerable to inaccuracies in sateadl variables like OS scheduling
load. Third, PCS devices are individually vulnerable to gnattacks that may not affect all
systems. These vulnerabilities may not be present in thefggaion of the system that the
virtual testbed was designed to emulate; examples incluateqol implementation bugs
that cause the device to be vulnerable to Teardrop attaédd$DLattacks, web application
attacks, or buffer overflows. Other security issues likerfygarotected or hard-coded de-
fault passwords to devices will also not be present. Witlodatory scale process control
systems, captures of these attacks can be provided in @uditiprotocol-based attacks
and normal background traffic.

In spite of their benefits, laboratory scale systems havenabeu of disadvantages.

First, laboratory-scale systems are expensive to develdan be difficult to maintain.

www.manaraa.com

In particular, ICS software can be brittle and not usermidig, and laboratory scale pro-
cesses require maintenance to stay operational. Secodithgant changing features in
a laboratory-scale system can be difficult. Third, the sizlooratory-scale systems is
limited by the required space and funds, so by necessityytsterms will be smaller and
less featured than a real ICS.

Virtual systems, on the other hand, can be simpler to deehophave practically no
maintenance costs. Doubling the size of a virtual systemireg only development time,
not a large purchase order. Furthermore, virtual systerfigrgations can be backed up
and recalled instantly, so changing or adding features tiotaaV testbed after does not
permanently alter the system. However, making changesdingdeatures to a virtual
system is arguably easier than in a laboratory system. Wndeaptures taken from ei-
ther a laboratory or a virtual ICS may be distributed, a magbrantage of a virtual system
is that a virtual system can be distributed widely to mangaeshers. For example, re-
searchers may use a virtual testbed provided by anothep goquiace intrusion prevention
systems in the testbed to test effectiveness; such disoibis impossible with laboratory
testbeds. Being able to distribute the virtual testbed alsans that any researcher can
recreate traffic captures if necessary; such capture regfere may be necessary if bi-
ases or problems are found with previously released dataEbkis openness can help the
testbed and datasets avoid obsolescence. Virtual testibe@dso more convenient to use
than laboratory testbeds for developing and debugging BZ8rdy projects because they
are portable and require little set up for an experiment. [§Wirtual testbeds provide a
number of benefits, there are some disadvantages to theiCeastin attacks, especially

6

www.manaraa.com

attacks that rely on device implementation errors, may ravkvagainst virtual testbeds.
Also, virtual systems may not perfectly exhibit the sameavadr as a real ICS system.
In spite of the advantages of a laboratory testbed, a vitesibed that is open and

freely available will solve the four problems describedha tast section.

all create their own testbeds; rather, if the open testbed dot fit a group’s needs it may
be improved in less time than creation of a new testbed. Hsslts in a higher quality
testbed for all researchers with less effort. Additionadiyrer researchers may contribute
virtualized versions of their laboratory testbeds for alluse. By enabling the creation of
more diverse testbeds, the first two problems of the pre\season can be solved.

Second, an open testbed provides a common ground for reseaen if researchers
wish to use their existing testbeds, they can also test astdhiite projects in the open
testbed. The benefit of this is that research groups can sbdes and published results
can be duplicated and compared. This solves the fourth disgassed in the previous
section.

Third, this testbed may be used to generate captures of heysiem network traffic
and captures of attack or anomalous traffic for IDS reseaschEhese captures may be
distributed with or independently of the testbed itselfisTib a benefit to IDS researchers
who prefer to work with captures instead of live testbedthéfsystem is open, distributed
captures may be recreated to correct for unexpected bigsissteduces the possibility of

capture obsolescence.

www.manaraa.com

Fourth, an open testbed opens the ICS security researctoareae groups. Presently,
ICS research requires substantial investment. With an tgsthed, researchers can ex-
plore the area without having to purchase large laboratetyps. Additionally, amateur
researchers and students can use the testbed without ha\hage the backing of a large
organization.

Finally, while this thesis will later describe verificatiof the virtual testbed, an open
testbed can be audited and verified by anyone. Because prebbay be identified easier
(according to the adage “Many eyes make bugs shallow”), aneécted by any inclined
researcher, the third issue of the previous section is dolve

While the testbed can be used to address prior problemsi@wdifeatures can extend
its usefulness. First, interoperability of the virtual t'gya with actual ICS equipment will
allow for hybrid testbeds and extend the usefulness of thiealitestbed. Second, design-
ing the testbed such that important characteristics like p@otocols or communications
interfaces can be changed will greatly enhance the easesdffuthe system, especially
compared with laboratory systems. Third, designing thébésksuch that components can

be replaced or extended easily will encourage use, reudesaniribution to the testbed.

1.2 Contribution

In response to this problems discussed previously, thsgHerms the following hy-

pothesis:

It possible to:

1. Create avirtual testbed framework using Python to cidiatzete testbed
components

www.manaraa.com

2. that is designed such that the testbeds are interopesdthigeal ICS
devices and

3. that virtual testbeds can provide comparable (within @@%6larity) ICS
network behavior to a laboratory testbed.

The first clause of the hypothesis indicates that insteadsofgle, monolithic testbed,
a framework will be created to allow for the construction aimg independent testbeds;
this framework will consist of discrete, replaceable comgrats. From the second clause,
the created testbeds will be interoperable with real ICSodsythis extends the usefulness
of the virtual testbed, but also serves as a guarantee admeal- a virtual testbed that is
not similar to a real ICS will not be interoperable. The thodduse indicates that the
virtual testbed behavior (especially with respect to nekwmaffic) will be very similar to
laboratory testbeds; this is defined in greater detail inpBdrar.

This thesis describes the development and evaluation ghamartual testbed frame-
work to test this hypothesis. The design of the virtual tedtbramework is broken up
into discrete components. The main components are theggaomulator and the virtual
device; other components include a module for analyzingigtacaptures and a module
for logging and creating virtual serial ports. Two simuthsystems have been created for
the testbed, and both have been designed to match exidbimigtary testbeds in the MSU
laboratory (Described in Subsection 2.2.1). These areaheratory-scale pipeline and
ground tank.

The following chapters detail the contribution of this tisesChapter 2 provides a
summary of related work, including more information abd@®] IDS, and related testbed

projects. Chapter 3 provides a survey of known attacks agammmon ICS wireless

9

www.manaraa.com

systems to show how ICS wireless systems can be used toevggatrity assumptions
in ICS; this motivates the need for further security reseancICS, particularly in IDS.
Chapter 4 provides an overview of the virtual testbed degagis, components, use cases,
and the two implemented systems. Chapter 5 discusses prsicagiation, while Chapter
6 describes the design of virtual ICS devices for the testb@dapter 7 discusses the
verification methodology, and verification results, and aistie testbed. Finally, Chapter

8 provides conclusions and future work.

10

www.manharaa.com

CHAPTER 2

RELATED WORK

2.1 Industrial Control Systems

Industrial Control Systems (ICS), also known as Distridu@®ntrol Systems (DCS),
Process Control Systems (PCS), and Supervisory ContrddatalAcquisition (SCADA)
systems are computer systems used to monitor control @iysiocesses in manufac-
turing, chemical processing, electric generation, eled¢tansmission and distribution,
water/wastewater systems, and other industries. ICScomeect and monitor physical
processes. An example ICS system is shown in 2.1.

ICS collect data from remote facilities about the state effithysical process and send
commands to control the physical process creating a fe&dimattrol loop. At the center
of Figure 2.1 is the Master ICS computer, termed the Mastemifal Unit (MTU). The
MTU may be a personal computer or a programmable logic cbetr@LC). The MTU
interfaces with Human Machine Interface (HMI) softwaredanay also connect to a
historian server (not shown) or the company’s corporate/ot to allow engineers and
managers access to information about ongoing processesmakter unit is connected
to Remote Terminal Units (RTU), which may be termed “slavies5ome systems and
protocols. RTU may be smart instruments themselves or cterpar PLCs that interface

with instruments, sensors, and actuators. Legacy ICS argected over RS-232, RS-485,
11

www.manaraa.com

"o

RTU1 MTU ‘RTUZ

irawall

Wireless Radios A

Figure 2.1

Diagram of an ICS System

and other directly connected physical media. Modern ICSicearporate those media
with Ethernet, Internet Protocol (IP), TCP, and/or UDP, amaly be directly connected
to the Internet, or connected to corporate intranets whiely hlave connections to the
Internet. In addition to the wired media of RS-232, RS-48BNBUS, and Ethernet,

ICS systems make use of a plethora of standards-based apidepaioy short-range and

long-range wireless protocols.

2.1.1 Programmable Logic Controllers

PLCs are digital computer systems that are designed to dustrial control systems.
They feature robust, rugged physical designs to withstandh industrial environments,

and typically run embedded system or custom operating mystéheir primary purpose

12

www.manaraa.com

is to send analog and digital control signals to physicaimgent, The values of these
control signals will be based on the PLC programming andagnahd digital inputs.PLCs
are primarily programmed using a graphical programminglage known as “ladder
logic,” which emulates the original control system paradligf using physical relays to
automate processes. However, they may also be programraddgh-level programming
language, such as C. Once programmed, PLC programming drahges. PLCs run a
processing loop that consists of reading inputs, runnidddalogic, and updating outputs
appropriately.A single run of this loop is known as a “scamtl the time from the start of

one loop run to the next is known as the “scan time”

2.1.2 ICS Protocols

This section details two commonly used standards-basddagppn protocols in ICS
systems: Modbus and HART. These protocols are used to comatarbetween RTU’s,
MTU’s, HMI software, and other ICS devices. Many ICS apgiea communication
protocols, including the ones listed here, lack authetitindeatures to prove the origin or
freshness of network traffic. This lack of authenticatiopatality leads to the potential for
external network penetrators or disgruntled insidersjexirfalse data and false command
packets into a SCADA system either through direct creatibauch packets or replay

attacks. These attacks may take place in either a wired etegis context.

13

www.manaraa.com

2.1.2.1 Modbus

Modbus[54] is a common protocol used in industrial contysitems and SCADA sys-
tems. Modbus uses a master-slave paradigm for commumeativithin Modbus, there
is no authentication of masters or slaves. Modbus may bedavwer serial connections
(RS-232 or RS-485) or may be carried over TCP/IP, which issinas Modbus/TCP[55].

The Modbus data model considers data elements as beingl $toi@ur tables, each
consisting of: discrete inputs (1-bit) , coils (1-bit outpl input registers (16-bit), and
holding registers (16-bit). Discrete inputs and input ségjis are read-only, and the data
comes from the device’s analog and digital inputs. Theskesadre addressed indepen-
dently, and the number of data elements in each table vaoesdevice to device. Modbus
data elements may be considered as the main memory of theegdeviModbus addresses
may be mapped to the device’s memory in some other fashion.

Modbus uses a request-response messaging paradigm behasters and slaves. A
master will send a request, and the addressed slave willsessponse. Broadcast mes-
sages from one master to many slaves are supported; in fgistba slaves do not respond.
Slaves do not send messages without first receiving a refjoesthe master.

A request message consists of a slave address, a functiepaiatidata. Modbus/RTU
packets include a CRC checksum after the data. The slavesgidra unique number from
0-247, and the address is the first byte of the request. Theifuncode is one byte spec-
ifies the type of request and what action should be taken bgléve. Example function
codes are given in Table 2.1. Not all function codes are impl&ed for all devices. The

data of the request varies based on the function code. Foead'Riolding Registers”

14

www.manaraa.com

request, the data includes the number of registers to redthanstarting address, while
for a “Write Multiple Registers” request the data includies starting address to write to,
the number of registers to be written, the byte length ofstegs to be written, and the data
to be written. Responses use an similar format to the regalisdugh the data will differ.

For a “Read Holding Registers” response, the message withaothe responding slave’s
address, the function code, the number of data bytes, aneédoested register data (and

CRC in Modbus/RTU).

Table 2.1

Sample Modbus Function Codes

| Function Codd Description |
1 Read Coils
3 Read Holding Registers
6 Write Single Holding Register
16 Write Multiple Holding Registers

Daniel Grzelak performed a security analysis of Modbus/T@Rvorks. He notes
that many Modbus/TCP devices have web interfaces, and hablaso find a number of
SCADA devices open on the web[36]. Identification of Modbasides can be difficult, as
the protocol is simple and by itself gives little informatiabout the devices in the system.
Grzelak notes that web interfaces and DNS records can gies aebout the type of device

in use as well as manufacturer and other information.

15

www.manaraa.com

2.1.2.2 HART

HART (Highway Addressable Remote Transducer protocolfisldbus protocol used
in 4 to 20 mA analog control loops. A 4 to 20 mA analog contradas a method of ana-
log control where a level is indicated electrically by a emtrin the range of 4 to 20
mA,; it can transmit sensor values within a range (press@mperature, etc.) or con-
trol values (actuator positions, motor speed, etc.). HARIvigles advanced field device
functionality, including configuration and debugging, lyperimposing digital communi-
cations on 4 to 20 mA loops. A common situation in processrobsystems is the use of
HART-compatible devices with non-HART compatible contieot. WirelessHART was
developed to add to HART a wireless mesh network that perasiésof HART data in
non-HART control systems, the direct connection of PCsthéeoHART network, and the

use of handheld devices in the HART network.

2.2 Related Testbeds

A number of universities and government agencies are dewvejor have developed
testbeds for studying SCADA system attacks. These testredsutlined below; follow-
ing that discussion, the ICS and Electric Grid testbeds at/M& discussed in detail.

Giani et al. proposed, but did notimplement, a SCADA testb#ld First, they defined
reference architecture of a SCADA system (in a configuragiomlar to Figure 2.1). Next,
the authors considered three types of testbed: single ationl(all in a simulation frame-
work like MathWorks’ Simulink), implementation-based (grie real SCADA devices are
used) and a federation simulation(simulation is combingd real SCADA devices). To

16

www.manaraa.com

tackle the problem of device synchronization, the autheecemmended the use of the US
Department of Defense High Level Architecture system.

In a Master’s thesis, David Bergman developed a simulatttiéd for modeling Elec-
tric Grid SCADA systems [16]. A network simulator, RINSE, svased to model com-
munications between simulated devices; these simulatddedeinclude relays and data
aggregators. PowerWorld software was used to simulatedtwePGrid. This simulated
testbed has the ability to be integrated with real hardwaids work, while featureful,
will not be released to other researchers. Additionallyyexdfication was done to ensure
that the simulated testbed traffic is similar to actual tcaffrurthermore, this testbed is
aimed for electric grid control systems and not general ICS.

In [31], the authors take the approach of using a small "cemplectromechanical
device consisting of pipes, valves, sensors, pumps, etoiddel a power plant. Their
system uses a number of different PLCs and field devices. &lseyuse a DeltaV DCS
system. They also included a small office intranet with itdenections with VLAN
VPNs, RADIUS, a DMZ and "external network" system. The authioave used this
system to demonstrate four different attack scenarios.

[39] discusses the work of a senior design team at lowa Stateetsity. They vir-
tualize two substations controlled by a control center Whincludes an HMI. They also
discuss possible attack vectors, including relay configpmachanges, denial of service
attacks, fabricating/modifying/disrupting alarms/d&tam relay, and injecting incorrect
data into historian. [59] describes the use of a Lego NXT tiabcit to act as a physical
system controlled by an ICS simulated with OMNet++. While NMXT provides a phys-

17

www.manaraa.com

ical system, all ICS processing occurs in the simulation.lldbftware is included in this
testbed.

[23] uses the Command and Control Windtunnel discretetesigrulation framework
with Simulink to create a simulation of a chemical proceggiant. Information about
plant variables is sent using Ethernet to simulated partiseoplant, but device semantics
(including ICS protocols) are not simulated. The authosteiga DDoS attack against this
system.

[56] describes a honeypot that emulates a TCP/IP-conn&tt€dusing honeyd. The
authors focused on emulating device appearance to an ak&tacker, and they include
FTP, HTTP, and Telnet in addition to Modbus/TCP. They do notude a process under

simulation, nor do they program behavior to initiate intgi@n with other devices.

2.2.1 MSU Lab

Mississippi State University’s laboratory-scale processtrol system cybersecurity
testbed uses process control system equipment to conttahanitor small, laboratory-
scale processes. MSU has two types of testbed: five labgratate ICS and a laboratory-
scale electrical substation (in which power flows are sitealp The ICS systems include
an oil pipeline system, an oil storage tank, water towengtdal air blower, manufactur-
ing conveyor, rolled sheet metal plant. The rolled sheeahpaint and electric substation
simulators use Allen-Bradley PLCs controlling their sysseusing the Ethernet/IP proto-

col. The remaining systems are controlled by single Comfiiotosystems PLCs commu-

18

www.manaraa.com

nicating over Modbus wirelessly to a single master PLC wwlitich is in turn connected
to an HMI. The electric substation testbed is described rithér detail in [64].

Two of the ICS systems — the pipeline and the oil storage tankre-discussed in
later chapters, so a more thorough treatment of them willleenghere. The olil pipeline
model system consists of a pipe with a pump, an electricalhtrolled release valve, and
a pressure meter, all connected to the controlling slave. RiiGs used in place of oil for
safety and simplicity. The system has three modes of operadif, manual, and auto. In
off mode, the slave closes the valve and turns off the pumpndnual mode, the pump
and valve status are set by the master PLC based on input FerHMI. In automatic
mode, a PID loop is used to maintain the pressure at a setpoétified by the master
PLC based on input from the HMI. Two modes may be selected: ppomade, where
the valve is always open and the pump is modulated on and afntrol the pressure,
and solenoid mode where the pump is always on and the valveeseal or closed as
necessary to control the pressure. The ground tank systesweter in place of oil for
safety reasons, and consists of a plastic water tank, avoeiseand a pressure gauge and
a pump connected to the slave PLC. The reservoir holds wateinrthe tank, and the
pump moves water from the reservoir to the ground tank; aghigies water continuously
from the tank to the reservoir. Like the pipeline, the grotamk has auto, off, and manual
modes. The off and manual modes work similar to the pipelystesn. The auto mode
has a low and high setpoint; the pump is turned on when ther\eatel is below the low

setpoint, and turned off when the water level is above thk kagpoint.

19

www.manaraa.com

The MSU Power Systems group has developed a smart grid degtbemodels an
electric transmissions substation for developing newrélyns for data management and
decision making as well as cybersecurity testing. Thisegstonsists of a real-time dig-
ital simulator (RTDS) that is capable of simulating the phgf a power system. The
RTDS is controlled by a support PC running RSCAD simulatantcad software. The
RTDS is presently configured to simulate two transmissinadj analog outputs of this
simulation is fed to General Electric Multilin PMU for moaoiing. These PMU are con-
nected over Ethernet to a Schweitzer Engineering Laboeatphasor processor PDC for
aggregation and analysis. There is also one Allen-Braday@actLogix programmable
automation controller (PAC) in the power lab for breakertooin Another CompactLogix
PAC is located in the Center for Critical Infrastructure teadion in Butler Hall; it con-
trols a model sheet steel processing plant, and is connéetdok testbed LAN via an
industrial 900MHz wireless Ethernet link. This model plato be considered a load in
a future use of the testbed. The PMUs send voltage and cynin@sbr data at a rate of 60
measurements/second to the PDC using the IEEE C37.118rgypiasor communication
standard. This connection uses TCP/IP over Ethernet. THe &bb support data streams

via UDP/IP over Ethernet.

2.3 Intrusion Detection Systems

Intrusion detection systems (IDS) are computer systemstteanpt to detect possible
intrusions in a computer system. Two principal types ard-based and network-based

IDS. Host IDS monitor single computers for intrusions; thgyically ensure that sensitive

20

www.manaraa.com

system files are not accessed or modified. Network IDS monétwork activity looking
for network traffic indicative of network attacks and intias attempts. In this thesis, all
references to IDS refer to network-based intrusion detedystems.

IDS performance is measured with four metrics: true pos#jifalse positives, true
negatives, and false negatives. These are described ialileektelow. True positives are
malicious behavior that is detected as malicious, but fatsstives are benign behavior
that is detected as malicious. True negatives are benigavimhthat is recognized as

benign, while false negatives are malicious behavior thdetected as benign.

Table 2.2

IDS performance metrics

| Behavior | Detected: Benign) Detected: Malicious

Actual: Malicious| False Negative True Positive
Actual: Benign True Negative False Positive

IDS may be anomaly-based or signature-based. Anomalydb&x® use statistical
and/or machine learning techniques to determine “normeifivork behavior and to note
deviations from normal as intrusions. They require tragnamd are more prone to false
positives, but they are also better able to detect new typesabicious behavior. Signa-
ture based IDS use compiled lists of signatures or rulestisdribe malicious behavior.
Signature-based IDS are simpler to deploy, as they reqoiteaming. Also, as the signa-

tures are based on known attacks, the false positive ratach tower.

21

www.manaraa.com

2.3.1 DS Testing

Intrusion detection system testing is discussed here Bedais expected to be a pri-
mary use case for the testbed. A number of projects have dbioke the testing of intru-
sion detection systems. One of the first projects descriltestimng methodology and an
Expect-based framework for running attacks in a laboragomironment[58, 57].

An important milestone on the topic of intrusion detectigstems was the DARPA
Intrusion Detection System Evaluations[43, 25, 45], wigeherated the DARPA datasets.
This project simulated a medium-sized US Air Force locaharetwork using a number
of hosts running Expect scripts to simulate user activitai(jnFTP, HTTP, telnet). In
the simulated traffic, a number of known network attacks vpendormed. The captured
data (9 weeks’ worth) was condensed into the KDD99 Cup diafakewhich provided
researchers with a CSV file with connection information fog entire dataset; the KDD
dataset was useful because it tagged which connectionsmaigous, making it possible
to train and verify IDS that use machine learning techniquése DARPA datasets, the
first of their kind, did have a number of flaws which were onlpagent in retrospect[19,
49]. One major issue was that it had not been shown that theMBARtwork traffic, being
simulated, actually resembled true network traffic. Anotesue was that all packets had
four possible values for the IP TTL field; benign packets doi&ve one of two TTL
values, and malicious packets used one of two others.

[60] discusses that author’s experiences with benchmauilB)® systems and details a
number of methodology flaws in commercial IDS product testii2] outlines the flaws

in the existing IDS testing methodologies and calls for a @&n-source IDS testing

22

www.manaraa.com

methodology. [50] recommends the use of shared data okdtigs for IDS testing. [77]
describes the application of mutations to known attackegbthe robustness of signature-
based intrusion detection systems. In [84], Stefano Zamerades a thorough discussion
of necessary characteristics to measure intrusion detesyistem performance; these in-
clude true/false positives/negatives, coverage, registi polymorphism, throughput and
latency, and response time (for intrusion prevention sgsjeZanero then discusses issues
generating background traffic (i.e. benign traffic) andckitsets. Zanero ends by stating
that intrusion detection system testing is still an operbjgm and mentions future work

similar to that proposed by Athanasiades et al.

2.4 PCSIDS

[83] discusses an anomaly intrusion detection system dpedliusing a Matlab toolkit.
To test its effectiveness, the authors used a testbed tiogsi$ Sun Microsystems servers
and workstations and ping flood, IP fragmentation, and LANiDdl attack denial of ser-
vice attacks.

[24] discusses the use of models for intrusion detectiomp8i, model-based intru-
sion detection consists of creating a model of the expecéddbor of the system and
noting behavior that violates that model. Cheung et al. ldgesl models for the Modbus
specification, communication pattern models for theiftedtequipment, and sensors for
detecting server/service availability. The models for Masland communication pattern
models were implemented as Snort rules. Their IDS was testied) a single multi-step

attack scenario in Sandia National Labs’ SCADA testbedctlbnsists of process con-

23

www.manaraa.com

trol system equipment. In [65], Roosta et al. propose a mbdséd IDS for wirelessly
connected process control systems. Their proposed systefindth a centralized IDS at
the network gateway and a distributed IDS at each radio nddey provide threat mod-
els and proposed policy. In [76], Valdes and Cheung exteanl Work in [24] to use a
multilayer monitoring architecture for event correlatithrat uses model-based intrusion
detection. Additionally, they present visualization tém showing communication pat-
tern anomalies

Hadeli et al. attempt to use machine-readable configurdiles for creation of IDS
rules in [38]. They developed a tool that combines ABB DCSfigumation files and some
user provided information to develop Snort and IP TablessulThey also developed a
Snort Preprocessor to look for absent traffic as a sign ofawalé activity. The authors
used laboratory equipment to validate the functionalitythed system, but describe no
actual attacks. Svendsen and Wolthusen argue for the ugSothlat use models of the
process being controlled, not only models of the PCS equipniier intrusion detection
[72]. They also provide several models of hydroelectrimfdao demonstrate how the
process may be modeled. Valdes and Cheung also exploredud nstwork patterns and
flows to detect communication anomalies with machine legrtéchniques [75]. They
implemented this system in an Invensys distributed corsystem. They used an nmap
scan and modscan[17] scan as attacks that their systenmsstidbedetected. Gao et al.
describe the use of neural networks for detecting injectediiis packets in a model
water system testbed[33]. Digital Bond has developed ratespreprocessors to detect
IDS attacks using the open source signature-based IDS[Short

24

www.manaraa.com

CHAPTER 3

SURVEY OF ICS WIRELESS ATTACK LITERATURE

As more robust radio solutions become available, wirelgstems are becoming vital
parts of ICS systems. They provide a relatively inexpengigg to add new communi-
cation links. Short-range wireless systems include IEEE BD (Wi-Fi), IEEE 802.15.4,
WirelessHART, and ZigBee, BlueTooth, and proprietary eyst. Each system presents a
unique set of security challenges. Each subsection predd®sic introduction to a sys-
tem’s technologies and applications, known security wabgities, and mitigation strate-
gies. Each section identifies attacks with an identifier neptheses; this identifier is to aid
the reader in clearly identifying references to attacksiar sections and was not assigned
systematically.

The following sections detail attacks that are possiblegthat an attacker has “com-
promised” a node. A compromised node is a member of the taegeork that an attacker
can control in some way; obtaining this level of control gally involves changing the
software or firmware of the node to be malicious. A node maydmapromised by an
insider with physical access to a device or by an outsiddr tuitjaned factory firmware
or malware. In many cases, wireless devices are placeddeut§ian organization’s area
of physical control; examples include smart meters in qustts homes (in the Smart
Grid Advanced Metering Infrastructure) or sensors plagethe field. In these cases,

25

www.manaraa.com

even external attackers can be assumed to have physicakdodfe device and are able
to exploit low-level design vulnerabilities. This can inde sniffing bus traffic before it
is encrypted, extracting and modifying the firmware, or ksgdag or replacing hardware
components[35]. If a node is controlled by a PC, as is commitim Bluetooth or IEEE
802.11, an internal or external attacker can compromigdBGaand thus also compromise

the wireless interface.

3.1 IEEE 802.11

IEEE 802.11 is a standard for wireless local area network&ElI 802.11 networks,
also known under the trade name Wi-Fi, are now ubiquitousomd office, and educa-
tional environments. Wi-Fi systems are also increasinglduin industrial applications,
and ruggedized access points are available for induss@lliiEEE 802.11 provides physi-
cal, MAC, and network layer services. IEEE 802.11 providiéEet access to operators’
PCs as well as MTU and RTU. These systems have a short rarigeaby access points
may be distributed throughout an area. Several amendneetiie tEEE 802.11 specifi-
cation have been approved to add features and define comaiong suites. 802.11 a, b,
g, and n, approved in 1999 1999, 2003, and 2009 respectarelg;ommunications suites.
These vary in speed, effective range, frequency use, andlatazh.

IEEE 802.11 provides multiple mechanisms for communicationfidentiality and
network access control. These include Wired Equivalenalyi (WEP), now deprecated,
and IEEE 802.11i. IEEE 802.11i is known as Wi-Fi Protecteddss 2 (WPA2). Wi-

Fi Protected Access (WPA) is a weaker subset of 802.11i andvisdeprecated; it was

26

www.manaraa.com

Table 3.1

IEEE 802.11 Vulnerabilities

| Vulnerability | ID |
WEP Key Recovery WF1
802.11e/WPA-TKIP Packet Injection | WF2
802.11 MITM WPA-TKIP Packet Injection WF3

WPA PSK Bruteforcing WF5
WPA2 GTK Packet Injection WF12
802.1X Credential Theft WF6
Physical Layer Jamming WF7

Short Interframe Space Jamming WEFS8
Clear Channel Assessment Jamming| WF9
Deauthentication Forgery DoS WF10

Disassociation Forgery DoS WF11
Rogue Access Point WF14
EAP Offline Dictionary Attack WF13

intended as a “stop-gap” measure that could replace WERIer blardware with only a
firmware upgrade. IEEE 802.11iis a direct replacement foPywhich was found to have
a number of security vulnerabilities (discussed in the paxagraph). IEEE 802.11 also
supports the IEEE 802.1X standard for port-based LAN auibation. 802.1X is popular
in enterprise 802.11 networks where preshared keys areswaldke. The standard itself
mandates the use of the Extensible Authentication Prot@€AP), of which there are
several varieties, including EAP-MD5, EAP-TTLS (Tunnekednsport layer security),
LEAP (lightweight EAP), and Protected EAP (PEAP).

The first attack against WEP was published in 2001[30]. Téhnique attacks the
RC4 encryption scheme used in IEEE 802.11; in the attackess case, he can recover

the key with 1,000,000 captured encrypted packétsatk WF). In the latest attack [74],

27

www.manaraa.com

an attacker can recover the encryption key and can havecfidlss to the wireless network
under attack by sniffing only around 24,200 packets; thi®ssjble in under 60 seconds.

Two attacks against WPA using the Temporal Key Integrityt®&gol (TKIP) were dis-
covered in 2009. The first attaclAttack WF2 works against networks using 802.11e
Quality of Service features [73]. The 802.11e amendmertipg 8 priority levels for
traffic to permit higher-priority traffic to have a lower laty. This attack can allow an
attacker to inject up to 7 packets in 12 minutes; 12 minutesdsired to gather enough
traffic to perform the attack, and 7 packets are availabla fitve remaining priority levels
which may have a replay counter low enough to let the injepeazkets pass. Although
this is is a small number of packets, precision packets maydfeed that can cause sys-
tems to crash or otherwise exhibit undesired behavior. Caaeple of a small attack
packet is a Local Area Denial of Service (LAND) attack. In aNB attack, an attacker
sends a TCP/IP or UDP/IP packet with source and destina®@mdt port numbers equal;
LAND-attack vulnerable systems will continuously sendo@sses to this first packet back
to itself and prevent other connections from taking plackagk WF2has been extended
to obtain up to 586 bytes of keystream; this allows an attaickmject larger packets than
was possible with the original attack[40].

The second attackAftack WF3 against WPA will work against any WPA TKIP net-
work; this attack uses a man-in-the-middle approach angheande an attacker one short
packet injection every minute[53].

Finally, WPA using the pre-shared key (PSK) mode is vulnleredboffline brute-force
key guessing if the connection handshake can be eavesdrappkethe key is too short

28

www.manaraa.com

(Attack WF3 [11, 52]. This handshake can be forced by briefly using tlzeitteentication
denial of service attack((F10or WF11, discussed below). For WPA-PSK, the use of a
random 16-hexadecimal digit number is recommended; th@lpassphrases for WPA
preshared keys is not recommended as they are more likelyitodictionaries [52].
Another attack Attack WF12 that effects both WPA and WPA2 is not a cryptographic
break but rather exploits the usage of keys for all clienisgian access point. There are
two keys used by WPA and WPA2 access points to encrypt conuatiomns with clients:
the Group Temporal Key (GTK) and the Pairwise Transient K&). The GTK is used
to encrypt broadcast messages from the access point taealts;l all clients associated
with an access point share a GTK. Separate PTKs are esedligtween the access point
and each client. The individual PTKs are meant to protech efient connection from
network attacks, like sniffing other clients’ traffic or iojeng messages to other clients,
from (rogue) authorized clients. However, clients will dégp accept spoofed messages
encrypted with the GTK [9]. This allows an attacker who ha$eanticated with the access
point to perform several attacks. The first of these is thattacker may become a man-
in-the-middle between two clients by ARP spoofing; by usimg G TK flaw, the attacker
can perform the ARP spoofing in an encrypted channel overithelzere traditional IDS
can not detect the attack. A second attack permits the attéekend any TCP/IP payload
to a client; this payload may be a TCP/IP packet attack (lik&MD attack), or malicious
code. With the GTK, an attacker can perform a third attacleraal-of-service against the
other clients associated with the access point. Each WP&Zepaontains a 48-bit packet
number that is meant to act as a replay counter — packets awkepnumbers lower than

29

www.manaraa.com

the highest seen by a client are dropped. An attacker usm@iK vulnerability can
spoof a packet with a very high replay counter, and causegiliinate group-addressed
packets to be dropped; this can cause a client to not resp@mARP request and prevent
IP traffic from reaching that client.

An attacker can sidestep authentication mechanisms riiyeestablishing a rogue
access pointAttack WF#)[70][14]. This attack is also known as an “evil twin” atkadn
this attack, an attacker establishes his own IEEE 802.1dsaqooint that broadcasts the
same service set identifier (SSID) as the network being taigdf this rogue access point
happens to have higher signal strength than a legitimatsaqmoint, victims will switch
from the legitimate access point to the rogue access poihesd victims will provide
authentication information to the rogue access point whihattacker can then use to
gain access to the legitimate network.

In addition to the vulnerabilities in WEP and WPA, there carpboblems with 802.1X
authentication as well. Many PEAP supplicants (user diegte configured to not authen-
ticate the RADIUS authentication server; an attacker cangsa rogue access point using
a fake RADIUS server to steal the authentication detailsr(name, password or challenge
and response) in systems using EAP-TTLS and PEAtRa¢k WF§ [82]. This may be
mitigated by requiring all clients to verify the certificatef the servers they are trying to
connect to. Additionally, tools have been released thatpeaform an off-line dictionary
attack against LEAP, EAP-MD5, and systems that use MS-CHWierfsoft Challenge

Handshake Authentication Protoc@jtack WF13[79, 80]. As this is a dictionary attack,

30

www.manaraa.com

systems using weak passwords are most vulnerable. Thes&satrant authentication
information that an attacker may use to infiltrate a network.

Additional attacks have been found against the IEEE 802dtbpol itself, not just the
authentication mechanisms, and include denial of sentteels and man in the middle
attacks.

IEEE 802.11, like all wireless systems, is vulnerable togital layer jammingAttack
WF7). Physical layer jamming can be as simple as a single RFlatseiltransmitting
on one channel of the transmission band, or may be as saattéxtias monitoring the
state of each protocol packet to predict the optimal time @grbd to jam to minimize
throughput[13].

IEEE 802.11 is vulnerable to two MAC layer denial of servitiaeks against its car-
rier sense collision detection mechanisms. The first ofeheglves the waiting period
between framesAttack WF8. An 802.11 radio waits a brief period before transmittiog t
check to see if the channel is in use; this period is known asStiort Inter-frame Space
(SIFS). If an attacker transmits briefly during this spad¢kenradios will wait to transmit.
This process could be repeated indefinitely, denying setai¢he network[15]. However,
this attack is power-intensive and would require a transimisrate of 50000 packets/sec-
ond. In the second attackitack WF9, the clear-channel assessment (CCA) mechanism
of 802.11b devices is attacked. The clear-channel assassneehanism is used to pre-
vent collisions, and actually operates below the MAC layerattack the CCA of a device,
another 802.11b device can be placed into a debugging matedhtinuously transmits;
this continuous transmission is seen as network activityheyCCA and prevents other

31

www.manaraa.com

devices from transmitting[5]. This continuous transnossiorms a simple yet effective
denial of service attack.

The network layer is also vulnerable to denial of servicackt$[15]. During connec-
tion, a client must first authenticate with an access pduet) tmust associate with a given
access point. The association step is required becaussaray authenticate with more
than one access point at a time (for example, in a plant-wideE1802.11 network) but
may only be associated with a single access point for netaockss. The IEEE 802.11
standard defines a 'deauthenticate’ packet used to end aciom the packet is sent
from the client to the access point to indicate an end in cotore This packet is unau-
thenticated and can be spoofed by an attacker. An attackege@erate deauthenticate
packets with the address of one victim, many victims, or eherentire networkAttack
WF10. This packet can be flooded or used only when a victim reatsrie the network
to create a full denial of service attack. A similar attagittéck WF1} is possible with
the disassociation packet, although that attack requiigistly more power on behalf of
the attacker. More power is required in the dissassociatitatk because more time is
necessary for a client under attack to reauthenticate amrgmssociate than to merely
reassociate; the faster a client can reauthenticate areliathenticate affects the rate at
which deauthentication or disassociation packets musebk and thus power expended.

The use of only WPA2 encryption is recommended for IEEE 8D2diworks. While
this may seem obvious to enterprise security professipitagsimportant to clearly state
because some recent, popular industrial access pointsdojmoort WPA2. Additionally,
strong passwords/preshared keys are essential to pregelttionary attacks. Finally, in

32

www.manaraa.com

deployments making use of 802.1X with PEAP, all supplicatsuld be configured to

verify the certificates of the enterprise RADIUS server.

3.2 IEEE 802.15.4 PHY and MAC Layer

The IEEE 802.15.4 networking standard describes a commysiqai and MAC layer
for Personal Area Networks (PANS). It is meant to be a commatetlying layer for de-
velopment of many different low-power, short-range wissl€ommunication protocols.
Use of a common layer allows for more rapid development déckht protocols for dif-
ferent purposes. 802.15.4 protocols that may be found trcakiinfrastructure include
WirelessHART, ZigBee, and ISA 100-11a. While a common bé#lseva for easier devel-
opment of standards as well as product development, vidiligiess present in the 802.15.4
standard will likely be present in devices making use of ayne above listed protocols.

For this reason, 802.15.4 vulnerabilities are treatedigdbparate section.

Table 3.2

IEEE 802.15.4 Vulnerabilities

| Vulnerability | ID |
AES-CTR Packet Corruption | E1
AES-CTR Replay Counter AbuseE?2
Physical Layer Jamming E3
Acknowledgement Fabrication| E4

The 802.15.4 standard mandates the use of the CCM* mode off&EShcryption.

CCM* provides several security suites: AES-CTR providessage confidentiality by

33

www.manaraa.com

encrypting data payloads, AES-CBC-MAC ensures messaggrityt with a 32, 64, or
128-bit message authentication code (MAC), and AES-CCMMioas the two former
suites. In the AES-CTR mode, a cyclic redundancy check (GRG3ed to provide mes-
sage frame integrity. This is insecure as it makes the fotigwattack Attack EJ possible
[66]. Suppose Alice is sending Bob a message routed througlfo. Mallory may
change the cipher text without decrypting it, because slgvkrihat it will do damage to
the plaintext (by the avalanche effect). Mallory then nesraits the bad ciphertext with
avalid CRC. The packet will be accepted by Bob as “good” when, in, fiidtas been
modified. When the payload is decrypted and the data is gwvémetapplication layer, it
will not be valid.

802.15.4 provides replay protection in the form of key aatife counters. Each packet
is numbered with these counters. If a device receives a ftaatdas key or frame counters
lower than the highest one seen by that device, the framdwitinored. In the AES-CTR
mode, which provides no cryptographic integrity protectih is possible for an attacker
to forge a packet with the maximum values of frame and key myarand send it to any
device in the networkAttack EJ[66]. This packet will cause any subsequent frame (which
will necessarily have a lower frame and key counter valubgtdiscarded; this effectively
forms a denial of service to the device that received thesibmacket.

Physical layer jamming attackéitack E3 have been implemented against a popular
802.15.4 device(Texas Instrument’s CC2480 transcell@})[This transceiver transmits
at 1 milliwatt using a “nearly isotropic” antenna; it is sffesd for use up to 100 feet
(approximately 30 meters). The test setup used placed twAB@s 1.2 meters apart.

34

www.manaraa.com

A simple, inexpensive jamming unit consisting of a voltagetrolled oscillator and a
mixer unit was able to jam communications between the twacdevfrom 15 feet (4.6m)
away from the two devices under test; this test used the samverpoutput and similar
antennas to the CC2480. This distance could be greatlyaseteby the jammer’s use of
higher-gain antennas and amplifiers.

While this test shows the effects of continuous jammingedele jamming attacks
against IEEE 802.15.4 have also been studied[71]. A Una&sftware Radio Peripheral
(USRP) can be used to briefly corrupt portions of packets eg #ne transmitted; this
has the effect of causing CRC and MAC checks to fail and forceiver to drop the
packets that are jammed. Advantages of selective jammapar power usage and low
probability of detection, as the short bursts use little poand they are too short to be
seen on a spectrum analyzer. Such selective jamming can tbe mare effective if the
attacker fabricates an acknowledgment from the recipernhé sender [66]. In IEEE
802.15.4, acknowledgments are optional, requested byetides, and not authenticated;
the lack of authentication makes it possible for an attatkéalsify the acknowledgment
to prevent the sender from attempting to retransmit[66].

IEEE 802.11b,g,n radios and IEEE 802.15.4 radios both tparahe same 2.4 GHz
ISM band. Because of this, it is possible for IEEE 802.11aado unintentionally jam
IEEE 802.15.4 radios. As few as four 802.11 radios operatimdifferent channels could
effectively cover the entire frequency space used by 802.d&vices[18]. Fortunately,

it requires significant 802.11 network traffic to cause d¢atian to the 802.15.4 devices.

35

www.manaraa.com

However, system planners should carefully manage the egisetystems used to prevent
spectrum conflicts between systems.

One mitigation strategy against jamming is to use direetiantennas. These antennas
will reduce noise, improve signal strength and throughgot, make jamming by a mali-
cious attacker more difficult. A drawback to directionalemias is that they will reduce
the effectiveness of mesh networks; as the transmissi@nisre longer omnidirectional,
fewer nodes will be within communications range. A secomdtsgy is to place cen-
tral wireless devices as close as possible to ground levelrionize exterior interference
(malicious or otherwise). Using directional antennas tgdgathe more central devices
will cause exterior interference to be filtered out of thenwak[18].

It is recommended that critical infrastructure controlteyss employ devices that use
the more effective AES-CBC-MAC and AES-CCM modes of endgypin their imple-
mentations and employ the wireless practices given in theigus paragraph to prevent

intentional or unintentional jamming.

3.3 WirelessHART

HART is a digital communication protocol used in industreantrol systems, and
WirelessHART is an advanced wireless extension of thatopmt WirelessHART uses
the 802.15.4 physical layer, and implements a pseudo-rarat@nnel hopping scheme
that allows for frequency-hopping spread spectrum (FHS®ration. WirelessHART
defines its own MAC and data link layer[69]. WirelessHART wetks consist of field

devices, adapters, handheld devices, and gateways[61].

36

www.manaraa.com

Table 3.3

WirelessHART Vulnerabilities

| Vulnerability | ID |
TDMA Desynchronization WH1
Packet Flood Attack | WH2
Gateway Spoofing WH3
Advertisement Saturation WH4
Wormbhole Attack WH5
Traffic Analysis WH6

Field devices are sensors and actuators which are Wiredd®EHtapable; adapters
permit the connection of wired HART devices to the WireleA&8T network. Handheld
devices may be carried by personnel to connect to devicedessly to configure, debug,
or poll them for data. Gateways are nodes that connect tredess network to the rest of
the automation network; additionally, all network devitese sessions established with
the gateway.

Confidentiality and integrity are provided by the AES-CCMtsidrom 802.15.4. All
network traffic is encrypted by default in WirelessHART netis. Security for packets
passing from radio to radio is provided by encrypting albdatk layer protocol data units
with a network key known by all devices in a network. End-tmteonfidentiality and
availability is provided by use of session keys. For exangu@pose Alice wants to send
Bob a WirelessHART message. Alice will encrypt the messaige thre session key she
has established with the gateway; she will then send thasagesto the gateway. The
gateway will decrypt and re-encrypt the packet with theisesksey Bob has established

with the gateway. Although sessions would be possible witgoing through the gateway,

37

www.manaraa.com

it is forbidden by the WirelessHART standard to do so. WeelART is vulnerable to
attacks at the MAC, Data Link, and Network layers[62].

The MAC layer offers the opportunity for a type of denial ohgee attack known
as a desynchronization attackt{fack WHJ). A desynchronization attack causes a node
under attack to become desynchronized from the rest of tfneonle In a TDMA scheme,
like the one used in WirelessHART, this can cause transarisand reception slots to
start and end at the wrong points, garbling the intended agessThe desynchronization
attack requires a compromised node (a network member umdattacker’s control) to
send improper synchronization information to a node unttack[62].

A denial of service attackAttack WH2 is also possible at the data link layer. A node
that knows the frequency hopping sequence can flood datdayst packets that have
valid CRC'’s into the network. These messages will requiramatation and verification
of the message integrity code (MIC) — an expensive crypfdgcaoperation — by the
recipient. Many of these packets sent at once will hurt tia trene requirements of the
network by preventing legitimate traffic to pass[62].

Several attacks are possible at the network layer[62]. Trise df these is gateway
spoofing Attack WH3J. In this attack, an attacker places a false gateway nodaniger
of the targeted nodes. In WirelessHART, gateways autheteticodes, but nodes don’t
authenticate gateways. This makes it possible for an atackcreate a false gateway
eavesdrop, modify data in transit, or to selectively denyise to some or all network

nodes.

38

www.manaraa.com

Another network-layer denial of service attack is also gmegAttack WH4 as net-
work join requests or advertisements can be spoofed by eegded with the well-
known key. The well-known key is published in the standasdniown by all devices, and
is used for initializing a network connection. These spdafxjuests and advertisements
can be flooded until the network is saturated.

Yet another attack is the wormhole attagktack WH3[62]. In this attack, a fast link
—the wormhole — is introduced between geographically distades. A wormhole might
be a higher data rate wireless connection or a wired link. aBee mesh networks are
self-optimizing, this wormhole induces a significant amoofrtraffic to travel through it
instead of slower routes with more nodes. Once a wormholstébbshed, an attacker is
able to eavesdrop on all traffic that passes through the walemAdditionally, the attacker
has the option of dropping packets selectively; the attackest do this sparingly, however,
because if too many packets are dropped the network wilkkrargund the wormhole. This
attack is quite difficult to perform in practice. It requirbeth a compromised network
node and a wormhole connection, like a wired path or very, fatiable wireless link.
Additionally, the attacker would need knowledge of the E@skeys to interpret data sent
through the wormhole.

Eavesdropping threats are of concern in all wireless nétsvan WirelessHART, data
link layer frames are authenticated with a network key, agtivork data is protected by
session keys. However, the source/destination addresseseant in the clear; this en-
ables traffic analysis by an attacker with radio accéstatk WH§[62]. An attacker can
analyze traffic patterns and determine the size of the n&tammvell as periods of activ-

39

www.manaraa.com

ity. Fortunately, eavesdropping payload contents is c@nably more difficult; it requires
knowledge of the session keys between two devices, or aagygghhic break in AES.
Traffic analysis is possible when an attacker is within radimge, as is eavesdropping.
Many of the attacks discussed here, like the rogue gatevagkatare protocol vulner-
abilities and cannot be easily mitigated. Following googiital security procedures and
the recommendations from the 802.15.4 section above arecsiart to mitigating these

attacks.

3.4 ZigBee

ZigBee is a low-power, low-data rate wireless protocol fee in Personal Area Net-
works(PANSs). Sample applications include industrial anthk automation[6]. ZigBee is
built on the MAC and physical layers of IEEE 802.15.4; spealfy, the ZigBee standard
defines network and application layer behavior. ZigBee e three network topolo-
gies: tree, star, or mesh; any of these may be used, depeonlithg application. ZigBee
networks are initialized and maintained by a node known asctiordinator; in a star

topology, the coordinator is the central node.

Table 3.4

ZigBee Vulnerabilities

| Vulnerability | ID |
Plaintext Key Sniffing| Z1
Association Flood | Z2
Frame Counter DoS| Z3
Compromised Node| Z4

40

www.manaraa.com

ZigBee uses security features from IEEE 802.15.4 in the ipAlyand MAC layers
in addition to adding network layer security. ZigBee uses AES-based CCM* from
IEEE 802.15.4 for network layer cryptographic services.oT@ature sets are provided
in ZigBee 2007, the most recent standard: ZigBee and ZigB&@. ZigBee PRO offers
support for larger networks and support for two security emdtandard and high[6].

Three types of cryptographic keys may be in use in ZigBee otwnetwork, link,
and master[7]. The network key is common to all devices imigt®vork, and is used for
broadcast messages. Each link key is only known to two deyvared is used for unicast
messaging between devices. The master key is used in gegdmak keys, and may be
provided to a ZigBee device by the manufacturer, the trustiecgdiscussed next), or by a
user. ZigBee uses a trust center to handle key managemantrust center can manage
only the network key, or it can manage the network key andrdkllkeys. The trust center
is tasked with establishing and changing encryption keysemetwork.

There are known vulnerabilities in the ZigBee network laylersome networks, de-
pending on trust center implementation, the network antaster keys are distributed to
nodes as plaintext[7]; this may be sniffed by an attackerus®d to decrypt messages or
to inject properly-signed and encrypted messagesf&tHc¢k Z1.

Additionally, an attacker may also conduct a type of denfadervice attack known
as an association flooding attadktifack Z3 against the ZigBee coordinator[44]. In this
attack, an attacker's device sends many association resgqarsbehalf of non-existent
devices. This action depletes the coordinator’s typiclithjted memory and prevents it
from associating legitimate devices [44, 81].

41

www.manaraa.com

To prevent replay attacks, ZigBee network-layer packeesaisrame counter; it is
possible to conduct a network-level denial of service byo$ipg a message with the frame
counter set to the maximum value to a deviédtdck Z3[68]. Any legitimate message
received by the device after the spoofed message will bededas old or replayed and
then discarded.

Another attack is that it would be possible for the attackedrop or misroute pack-
ets @Attack Z4 if an attacker can compromise a node in the network; thispeeally
dangerous in tree topologies. If the ZigBee coordinatoiatewere compromised, in the
star topology all traffic would be vulnerable to inspectigriabeing dropped. A problem
with the 802.15.4 cryptography system is inherited by ZigBsamely, the danger of the
AES-CTR suite of CCM*, which uses only a CRC for integrity[68

While some of the attacks mentioned in other sections havdeen implemented,
many attacks have been published for ZigBee. A Python lagg@immework for Zig-
Bee security evaluation, KillerBee, is available[81]. IKiBee uses a PC ZigBee device
to listen and connect to ZigBee networks. Provided toolkiohe zbdump, zbsniff, zbas-
socflood, and zbfind. zbdump captures and logs all ZigBeedsaseen by a device. zb-
sniff finds encryption keys sent across the network as @aintvhich sometimes occurs
in the standard if keys are not distributed out-of-band angisymmetric-key key ex-
change(SKKE). zbassocflood will perform an association flood againstwcde zbfind
provides a GUI for approximating the distance of nearby c&viin real-time, allowing

for the location of ZigBee devices in an area. KillerBee hasrbused to develop an ex-

ISKKE uses the master key to derive link keys

42

www.manaraa.com

tension for the Python packet manipulation module Scapyetof easier development
of attacks. A higher-level Python interface, ZBForge, soadvailable; ZBForge has been
used to implemenAttack Z371].

It is recommended that security features be enabled at thé,Métwork, and applica-
tion layers, including network encryption, MAC-layer asse&ontrol lists, secure network
joins, and link key-based encryption. Encryption keys $thdne loaded out-of-band (not
over the ZigBee network). Additionally, the address of thest Center as well as an ex-
plicitly designated ZigBee coordinator and backup coatiinshould be preloaded when

possible[47].

3.5 Proprietary Wireless

In addition to the standards-based wireless systems disdyseviously, a number of
closed, proprietary wireless systems are also used in |68sd& vary widely in purpose
and performance; some are designed to provide short-rangeanications, and others
are meant for longer-range links. Some of these systems mayg bimple as devices that
send single analog values to a PLC. Others may be used fanitimg MODBUS or
DNP3 data packets, while others still may be used for wisskeghernet using proprietary
protocols (distinct from IEEE 802.11). Examples are givetable 3.5.

Due to the closed nature of these systems, as well as thersaudiet share of any sin-
gle system, there are very few published security analybpsoprietary systems. How-
ever, the security of one proprietary wireless modem usedHort- or long-range com-

munication in ICS has been studied[63]. The results ardlddtan the remainder of this

43

www.manaraa.com

Table 3.5

Example Proprietary Wireless Systems

Manufacturer | Model |
Avalan Wireless AW900XTR
Banner Engineering | SureCross Data Radio
Freewave Technologigs Ranger R
GE MDS Mercury 900
OMEGA MWTC-REC6

section. This work demonstrates evidence that proprietgsyems are no more secure
than their standards-based peers.

As the problems discussed in that paper have not been pabgitbe vendor, neither
the vendor nor the model are named explicitly. The radio aesrwith spread-spectrum
frequency hopping in the 900 MHz unlicensed ISM band, and astan RS-232 serial
wire replacement. The vendor promises that its spreadsspedechnology is sufficient
to prevent detection and unauthorized access, and thateatifility is guaranteed by a
proprietary encryption. The radios will operate in one regsingle slave or a one master,
many slave configuration. Authentication is provided eithyea 12-bit network identifier
that is programmed into all radios or by programming all ekawith the serial number of
the master radio.

In this system, it is possible to discover all master-sla@®vorks in an area by using
a radio of the same or similar modétfack PJ. With network identifier authentication,
the entire space of all network identifiers can be searchddss than 22 hours; with

master serial authentication, all possible values can $teden 46 hours. This attack is

44

www.manaraa.com

Table 3.6

Proprietary Wireless System Vulnerabilities

| Vulnerability | ID |

Network Discovery | P1
Slave Eavesdropping| P2
Slave Packet Injection P3
Slave Denial of Service P4

fully automated and is trivially parallelizable. Once awetk has been discovered, only
the knowledge of several radio parameters (hop sequentzerate, et cetera) prevent an
attacker from joining the network with full access as a slanvie. Anecdotally, one control
engineer remarked that he used the known default value2tndhis firm’s installations
of this device. In that event, the attacker can have instzodgss; otherwise, an exhaustive
search of the radio parameters is required. This searctiakél no longer than 39 days to
gain an attacker full slave access, and the search is tyipatallelizable. Additionally,
these radios are in fixed placement and will likely not begated during the search.

As a rogue slave unit in this proprietary network, the attsckay eavesdrop on any
data sent from the master to any slaydgtdck P3. No data encryption is seen by the
attacker. Additionally, the rogue slave may inject its ovatadinto the networkAttack
P3). Also, this particular radio protocol has no contentiobimation amongst slaves — a
slave may transmit continuously, and other slaves will wadefinitely for the first slave
to finish. An attacker can use this to mount a simple, thoufgte¥e, denial of service
to slaves attempting to transmit to the maststtdck P4. Fortunately, master to slave

communication is unaffected. This lack of contention isjost a danger from malicious

45

www.manaraa.com

attackers; a faulty device could generate a stream of datalaw or completely hinder

communication from other slaves.

3.6 Bluetooth

Bluetooth wireless technology is a standard for low-powkart distance radio com-
munications. It is perhaps best known for its use in portdelgces, in particular mobile
phones. The technology is not as pervasive as others in I€®ugh it does merit con-
sideration by control systems engineers. Within ICS, itliamised as a serial replacement
or embedded in devices outright. It can be used to connestg®nt devices — sensors,
actuators, controllers, et cetera — or to allow a controlrafme to connect a laptop or
handheld device to the ICS network[10].

Similar to 802.11 networks, Bluetooth technology makesafdérequency Hopping
Spread Spectrum (FHSS) transmission in the 2.4 GHz intematiISM band. Bluetooth
devices can have a transmission power of 1, 10, or 100 mW, aadrasponding radio
range of 1-100 meters. Bluetooth version 2.1 was publish2@07; this version contains
significant improvements in security. All Bluetooth de\ddeave a unique 48-bit hardware
device address; the first three bytes at this address corrédp the device manufacturer,
and the remaining three bytes are assigned by the scheme ofahufacturer’s choice.
This address is known as the BD_ADDR and is analogous to th€ ldddress assigned
to Ethernet network devices.

Bluetooth security is heavily dependent on how a device idigared. Specifically,

a device can be set to one of 3 security levels[37]: publivape, or silent. A device in

46

www.manaraa.com

public or “discoverable” mode broadcasts its existenceamadability for connection. In
private mode, a device will allow connections if addressgd$BD ADDR, but does not
broadcast its existence explicitly. In silent mode, a devill accept no connections.

Devices can also be configured to use encryption using thgBercwhich is specified
in the Bluetooth standard. Bluetooth encryption allowsdorariable key size up to 128
bits. Only the data payload of a Bluetooth packet is encdiptBluetooth devices are
“paired” in a master-slave configuration. In versions pt®m2.1, the same PIN code must
be entered into both devices (or hard coded in devices withwuman interfaces). The PIN
code is used to create an initial key, which is then used @bésh a link key. The link
key is used to re-pair the devices; a PIN is not required ardiévice forgets the link key.
Examples of when a device may do this include a memory resgiam user request.

The link key is also used to generate the encryption key. lBegg with Version 2.1,
Bluetooth uses a new pairing mechanism called Secure Sirgdteng(SSP). Prior to 2.1,
the only source of entropy in the pairing process was the PIISSP, the Elliptic Curve
Diffie Hellman (ECDH) key exchange protocol, with greatetrepy than a 16 digit pin,
prevents eavesdropping. The pairing protocol can prevemt-imthe-middle attacks by
presenting a six-digit number on both devices being patfeese will match if there has
not been a man-in-the-middle attack.

Several vulnerabilities exist against Bluetooth, altHoatmost all of them affect ver-
sions prior to 2.1. Those that are effective against vergi@rdevices and beyond will be

noted accordingly.

a7

www.manaraa.com

Naturally, as Bluetooth uses a wireless medium, it is vidhks to physical layer jam-
ming (Attack BT1). Since Bluetooth shares many of the sanaatteristics as IEEE
802.15.4 networks, it is vulnerable to the same types of jargfh8]. Additionally, Blue-
tooth devices are meant to be limited in range — no more th@&ml1®ypically. Several
researchers have demonstrated the ability to eavesdropcamchunicate at ranges from
788m(.49 mi) to over 1700m (1.08 mi) (Attack BT2).[28, 4] Tresults depended on
good directional antennas and geographic consideratimesdf-sight, altitude, or prox-
imity to water). With good equipment, however, it is even gibke to communicate at
range through buildings[28].

While public/discoverable devices may be found by any ned@luetooth device,
private devices may only be found and connected to by addresse device by its
BD_ADDR. Because of this, private devices are more secuagapattackers attempt-
ing access. However, BD_ADDRSs can be obtained as a precirsher attacks using
two methods. The first of these uses direct brute forcingg@tBT3). If the manufacturer
of the given device is known, the minimum time required isragpnately 2.6 years[37].
A second technique (Attack BT4) to obtain a BD_ADDR s to &fof the channel ac-
cess code (CAC) in broadcast packets, which is related tBEheADDR[28]. Using this
method, less than 22 minutes are required to arrive at a BIDRas only 8 bits must
be brute forced. Although it has not been tested, this teglenshould also work against
version 2.1 devices.

Knowledge of the BD_ADDR is a precursor to connection and é&bsother attacks.
For example, once the BD_ADDR of a target is known, it is palssio place a Bluetooth

48

www.manaraa.com

device modified to use the same BD_ADDR as the target (Attadk BWhen the second
device receives transmissions addressed to the targatl &so respond. This response
occurs at the same time as the first, and will effectively jamtarget.

It is possible for an attacker who can eavesdrop on a PIN exgehto quickly obtain
the PIN by brute force (Attack BT6)[67]. Using a 3 GHz PentidrRC, it is possible to
arrive at a 4-decimal-digit PIN within 60 ms — near real-tinfehis delineates a risk of
rogue connection to devices configured to use a static PINiliayuBTCrack, is available
that can use this attack to take encrypted pairing data aive @t both the PIN and link
key[2]. The link key can be used to authenticate an attaskegue device to the sniffed
target, connect to that device, and manipulate the devieettif[27]. The link key can also
be used to decrypt eavesdropped exchanges between déétraging the confidentiality
of the system. These flaws were corrected in the new secutyigions of Bluetooth
version 2.1.

Bluetooth technology is also used in many laptop and haddi@lices; these devices
depend on properly implemented device drivers to functmmectly and securely. Flaws
that gave full directory access(Attack BT7) have been disced in the Bluetooth software
stacks from Apple, BlueSoleil, Toshiba, and Widcomm; tbgethese stacks represented
a significant portion of the PC Bluetooth device market. Enadnerabilities were later
patched; however, patches are often not applied in critidadstructure systems.

There are several strategies to consider when using Blifetechnology in industrial
and critical infrastructure environments. First, longtdhce communication is certainly
possible for a motivated attacker. The physical security law radio range, even tak-

49

www.manaraa.com

ing into account site dimensions, cannot be depended onléty grovide security for
Bluetooth networks. To prevent eavesdropping and datatinjg 128-bit encryption keys
should be used in every application possible. (32-bit gutaop can be cracked in under a
hour with a desktop machine [37]). The authors also highidgmemend migrating to Blue-
tooth 2.1 devices whenever possible. In cases where legasions of Bluetooth (earlier
than 2.1) must be used, it is important to use long pins, wetitnumeric characters when
possible. Finally, leaving devices in private or silent ragsl advisable as it significantly

increases the complexity for an attacker to connect to dsvic

50

www.manaraa.com

CHAPTER 4

OVERVIEW OF VIRTUAL TESTBED

The development of security practices and techniques inethlen of process control
systems has lagged the development seen in traditionaimiatoon technology. However,
researchers and industry practitioners have taken notiteedassue and are developing
best practices, secure protocols,and intrusion detesyistems to meet the security needs
of process control systems. These research efforts aredrathpy the lack of an open,
virtual testbed for ICS security research. One purposeisfdistbed project is the creation
of an open, sharable system that can be made freely avaditatitee use and modification
by other researchers. This will provide substantial beméditthe ICS security research
community. First, it will allow the replication of researon systems that can be common
to all researchers; published findings can be verified anddwga without having to rely
on features that are present only in one researcher’s tesiaeond, other researchers can
contribute new protocols, device types, and instances 8fdgstems that can be shared
and distributed widely. Third, and perhaps most importamirors and biases found in
captured traces can be corrected and new captures genanatstiared; having a “living
library” of captures avoids the issues found in similar I2Sting approaches involving

libraries of traffic captures discussed in Chapter 2.

51

www.manaraa.com

This chapter provides an overview and description of degmgls, components, and
use cases of such a virtual testbed. A section discussingniggechniques is also pro-

vided.

4.1 Design Goals of Virtual Testbed

The virtual testbed should meet two sets of goals: functigoals, which govern what
the testbed should be able to do, and characteristic gohlshwovern qualities that the
testbed should have.

The main functional goal of the testbed is to be able to emaul@alistic serial and
TCP/IP ICS protocol communications. These captures mustdlestic in protocol fea-
tures, ICS system behavior, and include ICS data. ldeagtwes from a real system
would be indistinguishable from captures from the virtwesdtbed; this will likely never
be the case, though, so it is important that amount of siityilaf traffic be known quan-
titatively. In addition to the ICS traffic, it is importantdhthe process under virtual ICS
control can also be shown to be similar to actual physicalgsses.

Captures of the network traffic, to be effective for resegqratposes, must be logged
reliably; logging should be done with a minimum effect on I88& traffic itself, and with
sufficient precision and accuracy to fully describe the bahaf the system. In addition
to exhibiting realistic traffic, the testbed should also bkedo interface with actual ICS
system equipment. This helps to ensure that the testbedehasibr compatible with real

ICS systems, and facilitates the use of the system as a “bdti@ research on equipment

52

www.manaraa.com

vulnerabilities. This requirement dictates that the \afttiestbed must be capable of soft
real-time operation.

In order for the benefits of an open system to materializeyitieal testbed system
must be flexible and easily extended. Each component shtand sndependent of other
components; no individual component must be essentialecabipn. This aids in the ob-
jective that the virtual testbed integrate with existingteyns; it also allows researchers to
adapt other projects to work alongside this virtual testliecamples include the ability to
include PMU and PDC instances from the OpenPDC project, iotégrate other software
virtual testbeds.

This principle of “interchangable parts” dictates that gaments must have well-
defined, modular interfaces. Application of this principl@ndates that data sharing
between components should be standardized internallptistandards-based. Another
implication is that it should be very simple to convert sysseusing one ICS protocol to
another; this will facilitate ease of use by researcherslaad to the easier creation of
security techniques and systems that function for many IK@®pols — not the single pro-
tocol supported by a testbed instance. For this reason, ofuble specification of system
behavior and characteristics should be maintained inkdaged configuration files. Such
files also promote usability and the ability to troubleshewors; this is especially true in
comparison to the configuration methods for actual ICS systiat rely on buggy GUIs

for configuration.

53

www.manaraa.com

4.2 Components

The design of the virtual testbed is broken up into discretmmonents. The main
components are the process simulator and the virtual deviber components include a
module for analyzing packet captures and a module for laggid creating virtual serial
ports (discussed in Section 4.4). Figure 4.1 shows how tt@s@onents form a complete
testbed. At the center of the diagram are virtual devicasggtke places of MTU and RTU
in an ICS system. These virtual devices may be replaced byG8aequipment. Virtual
devices may be connected using Ethernet links, wireledemsgs or serial connections
(using the PortLogger virtual serial ports). Virtual degamonitor and control a process
simulated by the process simulator. Real HMI systems mayobeected to the virtual
devices.

All components were written in the Python programming laagg:r Python is a dy-
namic, interpreted object-oriented language. This caaipesformance penalty compared
with other languages compiled to native machine code. Ite sy this disadvantage,
Python was used for four reasons. First, Python can be higlaglable and promotes
rapid development; this simplifies initial design and maikessier for other researchers
to learn the system and make modifications. Second, Pytlradorés extensive built-in
libraries for user interfaces, logging, unit testing, atic computing (used in verifying
and visualizing the generated traces, and can be benefic@ocess simulation), and
even ICS protocols (including Modbus). Third, C code can b&ewn as a Python module
either manually or by using a toolkit like SWIG; this featuakbows the use of already

developed and tested ICS protocol libraries in the virtastided without having to write

54

www.manaraa.com

—"a Process Simulator o—"a

Key:
|CS Ethernet
ICS Serial
Simulator Comm .. — - — .. HMI
Figure 4.1
Testbed Architecture
55

www.manharaa.com

an implementation from scratch. Finally, Python featuiles dlynamic “duck-typing” and

module and object introspection allow for simple yet powkpblymorphic interfaces, al-
lowing components like protocol types to be interchangeuhdessly and specified from
configuration files with little extra code.

Traditional network simulation toolkits, like NS-2, NS31cahOMNet++ were not used
for several reasons. First, traditional network simulatioolkits feature a heavy burden
in both design complexity and learning curve. For testbex®d on network simulation
toolkits, not only does a new researcher in ICS security avearn about ICS, he must
also learn the toolkit. By eschewing the complexity of ttemtial toolkits, this project
hopes to increase user-friendliness while not sacrificeriogpmance relative to the goals
discussed in the previous section. Second, traditionalar&tsimulation toolkits focus
on providing detailed modeling of system behavior for perfance optimization; this
includes fine-grained modeling of queueing effects and adyprocessing delays. By
contrast, this project is concerned only with the level dadeequired by ICS security
researchers — not ICS network designers. Third, traditinatwork simulation toolkits
focus primarily on TCP/IP and wireless networks, and marnigtigyg testbeds are also
focused almost exclusively on TCP/IP ICS networks. Thiggmiaims to provide an
emphasis on serial-communications-based systems whileegtecting TCP/IP ICS net-
works. Finally, traditional network simulation toolkitseadesigned to have the flexibility
to model large network behaviors; by contrast, as most IG&ays number in merely tens

of nodes, the complexity of being able to model large netwaskot needed.

56

www.manaraa.com

4.2.1 Process Simulator

The first component of the virtual testbed is the processlsitmiu The process simu-
lator is meant to simulate and model the mechanics of a palysiocess being controlled
by an ICS. For example, if a testbed were designed to model atoage tank, a process
simulator would be necessary to manage the physics of filtiagank, including enabling
the pumps and drain valves. Process simulators must siemutatonly the physics of the
system, but also be responsive to control inputs from the(l@&ial or real), just as in a
real ICS. For ICS security research, it is vital to be able talel the effects of attacks and
countermeasures not just on the ICS equipment but on thalgotacess under control.

The virtual testbed process simulator is designed to conwatendirectly with some
or all of the devices in the virtual testbed; this communarabccurs on a “back channel”
separate from the ICS communication. The communicationsisbof measurements
from the simulator and inputs to the simulation from the desi The data that comes from
the simulator is meant to mimic the analog and digital inpotsd in PLCs and other ICS
devices used for temperature, pressure, flow, and otheregaddne data delivered to the
simulator is meant to emulate the analog and digital outpnt&CS devices that are used
to control actuators like motors, pumps, and valves. Thegs® simulators are discussed

in more detail in Chapter 5.

4.2.2 \Virtual Devices

ICS consist of devices that make control decisions and imeig those decisions in

the system either directly by physical input or by commuticato other devices. In

57

www.manaraa.com

practice, these devices are often PLCs in ICS, or Relays, RMUPDC in electric grid
contexts. These devices are modeled in the virtual testpatstances of “virtual devices”
or vdevs. Vdevs communicate with the process simulatorggustcondary communica-
tions channels and other vdevs and real ICS devices via I@8qwnis. As such, vdevs are

the most critical components of the virtual testbed.

4.2.3 Configuration Files

Both the process simulator and the vdevs are highly modatat,system character-
istics and behavior, apart from the process control logit #e process simulation, is
described by a single configuration file. This file is textdzhand can be hand-edited
or machine-generated; the current implementation use€onégObj Python module to
read the file, and the file consists of data structures in Pyttgect syntax.The file con-
tents include simulator configuration information and cgufations for each vdev in a
system. Simulator configuration information includes detar interface type, interface
configuration information, and simulator variable iniizaltion (what values should simu-
lator variables start as). Vdev configuration informatinaliides the number and names
of each vdev in the system, the data objects to be storedtéRdiscussed in Chapter 6),
interface timeouts, ICS protocol types, ICS servers armhtdiprotocol types and number,

and ICS interface configurations (like addresses, portgteta).

58

www.manaraa.com

4.3 Use Cases

Although the virtual testbed was originally conceived vittle limited goal of further-
ing IDS research, the choice to design the testbed in a mothdaner and the fact that
the testbed is designed to operate “live” in soft realtimeat)y increases the ways that
the virtual testbed can be used. This section outlines tiatarse cases of the virtual
testbed by new ICS security researchers, veteran ICS gemsearchers, in ICS security
education, and in industry.

Making the virtual testbed available free of charge will &awthe barriers for re-
searchers entering the ICS security area. New researchiéisevable to conduct, at a
minimum, preliminary work in ICS security before investiagnificant funds on a full
ICS testbed. Because the virtual testbed can integratereg@hequipment, researchers
can perform security testing and evaluation of ICS equigrfardevice and protocol vul-
nerabilities with a full ICS, not merely a PLC or two. Resdws can design attacks
against physical devices or against the virtual devicesjedlsas design countermeasures
and test them in the virtual system as well. Lower barriersritty may more research
being done to improve the state of ICS security.

Veteran researchers who already have substantial invettnmelCS testbeds can also
benefit. First, researchers can “digitize” their existiegtbeds and gain the benefits of
virtual testbeds. Although the virtual systems would naw/seo replace the physical
testbed, researchers can gain many of the benefits of thmldgstem. These include
low maintenance (virtual systems do not age, and can beeestmm backups or version

control systems), quick reconfigurability, and the abitbydistribute the system among

59

www.manaraa.com

their research group, collaborators, and the research corynin addition to being able
to share their own testbeds, a veteran researcher will @sile to do research in virtual
testbeds that are provided by others; this permits raptohtesf new ideas in a number of
different systems. IDS researchers may use the virtudlddgo test IDS approaches in an
ICS before moving to a hardware platform (this is especialgvant with serial systems).

The virtual testbeds can also be used for ICS security eduncand training. Already,
ICS security is such a growing field that training in attackl alefense is coming into
demand. Private training firms may use the virtual testbed$ort courses to teach ICS
exploitation and defense without having to resort to manig much physical equipment.
Individuals may investigate ICS security by obtaining tivéual testbeds and studying in-
dividually or after a training course. Graduate course€i8 security can use the testbeds
for similar purposes or to encourage research projectsbiald be infeasible otherwise.
Virtual testbeds may be also be used in cyberdefense cainpstor capture-the-flag ex-
ercises to add ICS security to the list of challenges.

Finally, the virtual testbed can be set up in corporate emwvirents as a honeypot.
Honeypots are networks or simulated networks of poorly setaomputers that are not
used by an organization, but serve as an attraction or digtreto attackers who cannot
tell the difference from a production system. Honeypotsused both as a research tool
to learn about attackers’ methods and as a defensive measpirevent an attacker from
affecting critical systems and to discover the vulneréibgithat lead to the exploitation of
the honeypot. Deploying a virtual testbed in an enterpresevark would carry a low cost
but may serve to improve an organization’s ICS securityyrest

60

www.manaraa.com

4.4 Logging

As a main goal of the virtual testbed is the generation ofulsidtasets, an important
consideration is just how exactly these datasets shouldapeied. Traffic capture, if
done improperly, can lead to missing data or erroneous ctaistics, like inaccurate
timing. This section addresses techniques and tools thatlieen developed for creating
captures using the virtual testbed. The following subsestdescribe preferred methods

for obtaining traffic captures from TCP/IP ICS testbeds astdal systems.

4.4.1 TCP/IP Logging

Capturing TCP/IP network traffic is a common practice, andl-lgown tools and
techniques exist. The main software tools for capturingvogk traffic are based on libp-
cap and include Wireshark and tcpdump. Obtaining captuiresvibiched Ethernet net-
works (in actual ICS, for example) may entail configuring sASRport on a switch to
mirror all traffic to the port that is being logged; in hubbetth&net networks this is not
necessary. Multiple capture systems may be needed in |atgeorks that are not con-
nected at Layer 2; this includes systems with “air-gapsthed_AN and virtual LAN
configurations, including systems that contain firewalls.

Capturing traffic in a virtual system comes with differenhsmlerations. As each vdev
is implemented as a single process, for testing purposssitiiable to use Localhost as
the address for all devices. However, to generate reatrstiiiic, each device should have
its own IP address (likely in the same subnet). One approactidie to host each virtual

device on a single workstation; a more practical approachiavbe to have each device

61

www.manaraa.com

run in a virtual machine on a single host. This host can plédageaices on a host-only
virtual network from which traffic may be captured using taptg or Wireshark. This
provides a separate network address to each device, andhalses it possible to keep
simulator communications distinct from the rest of theliedttraffic and also the network

traffic of the host machine.

4.4.2 Serial System Logging

While logging of TCP/IP systems is common, logging of sec@anmunication sys-
tems is not. Additionally, no operating system natively gonps an interface that is per-
fectly analogous to an Ethernet loopback interface foratsgistems. Because of this, a
Python program, PortLogger, was written to address theseetns for Linux systems.

Specifically, PortLogger solves three problems:

1. Creation of virtual serial ports to connect multiple vslev

2. Ability to connect multiple virtual ports to one or moreygsical serial ports on the
machine

3. Log all data transmitted by serial devices (virtual orevtiise)

To create virtual serial ports that can be logged, PortLoggeates a pseudoterminal
master/slave pair for each virtual device requiring a $@oat; the slave port is provided
for the device (or a symbolic link is created from the slavet po a file that the device
expects to read), while the master port is opened by the Bogikr. When a device sends
a message, it is read by the PortLogger, echoed to the otherede and logged. The
PortLogger can also open a physical serial port, and echoddram it as if it were one

of the pseudoterminals. It is also possible to designategesidevice as a “Master” to
62

www.manaraa.com

emulate a master-to-slaves multipoint RS-485 system. Db &yger can also execute a
delay between receiving a message and retransmitting mtdege transmission delays.

When logging an actual ICS with no virtual components, eigfigdo gather data for
comparing a virtual testbed to an actual ICS, it is importaottto modify or impede the
flow of traffic. Logging techniques that place an active dewetween two devices to
be measured — “bump-in-the-wire” systems — cannot be usedtain traffic captures
that contain timing information that reflect traffic condits when the system is not being
logged. Instead, serial tap cables should be used; thesalales used between to connect
two serial devices that have additional connectors on eatdnlohe for a logger to listen
to transmissions. The PortLogger may also be used for thsoge.

As there is no standard for serial system log files as theratisRCAP and TCP/IP
networks, a log format specification is required. Currergch PortLogger capture is a
standard text file that holds a four-line header containimgdtart time, the ports being
logged, a header that describes the file format, and a foumehfdér optional comments.
Each record is specified on its own line, and each record rwitae Unix time the packet
was received by the logger, the port it was sent from (virtuadtherwise), and the data of
the packet. Each field in a record is separated by “ : “ — a s@acelon, and a space. Each
byte of the data field is encoded as a two-character hexadegatue to prevent binary
data from being interpreted as file formatting marks. In tierie, it may be necessary
to use a more compact binary file representation; the Snoopatq RFC 1761) would be
a good option as it is extensible, standards-based, anddeddy common tools like
Wireshark.

63

www.manaraa.com

4.5 Testbed Systems

Two simulated systems have been created for the testbetptimtiave been designed
to match existing testbeds in the MSU laboratory. Thesehardaiboratory-scale pipeline

and ground tank. These systems are described in Subse@idn 2

45.1 Pipeline

The pipeline virtual testbed is based on MSU'’s pipeline fabmry system. This system
supports Modbus/RTU and Modbus/TCP ICS communicationtopots. This testbed
simulates a pipeline used for oil transportation. In thewdated system, there is a pump
that creates pressure in the pipeline by pumping “oil” ind @anvalve that releases the
pressure by delivering oil. There is a single analog pressensor that indicates the
pressure in the pipeline

The ICS of the pipeline consists of a master vdev and a slage vthe master vdev
polls the slave for updates on pump status, valve statuslipgppressure, and sets com-
mands for PID setpoints, PID constants, control mode, obtype, and manual settings
for the pump and valve. The slave vdev reads the analog peegslue from the simulator
and responds to requests from the Master units. The slagear&étD algorithm to main-
tain the pressure at a constant setpoint based on pararseténgthe master, and sets the
pump and valve positions. The communications consist otad'registers” request and

response and a “write registers” request and response.

64

www.manaraa.com

45.2 Ground Tank

The ground tank virtual testbed is based on MSU’s ground tab&ratory system.
This system supports Modbus/RTU and Modbus/TCP ICS comeations protocols, and
simulates a ground tank used for oil storage. There is a anhfibw of fluid from the
storage tank, with a pump to increase the level of fluid asestpa. There is a single
analog pressure sensor that indicates the fluid level inahk. tThe ICS portion of the
testbed consists of one master vdev and one slave vdev. Tdtemadev polls the slave for
updates on pump status, water level, and sets commandsfar kvels, level setpoints,
control mode, and pump on/off. The slave vdev reads the grakssure value from the
simulator and responds to requests from the Master unit® sldve also provides the
simulator with a value for turning the pump on and off. Thevelalso manages high and
low alarm levels. The communications consist of a “readstegs” request and response

and a “write registers” request and response.

65

www.manaraa.com

CHAPTER 5

PROCESS SIMULATORS

This chapter discusses the design of a process simulataséoin the virtual testbed.
The process simulator is meant to simulate and model the anéxhof a physical process
being controlled by an ICS, expressly for the purpose of iging the testbed devices a
process to control. A number of commercial software systiaissimulate ICS processes
exist, and are used in industry for control design and opeiaaining[51]. Commer-
cial industrial process simulators are sophisticatedufeéul, and designed to be able to
simulate very complex processes. These systems are expéodicense and none are
open-source or available free of cost. The virtual testbledgss simulator is meant to be
an open, free alternative to expensive industrial systemghe sole purpose of security
research; itis not (nor was it designed to be) to the levebphsstication of industrial pro-
cess simulators. The custom simulation framework in thairtestbed may be replaced
by one of these systems, if one is available to users of thieeegthis is discussed later).

Process simulators must maintain a faithful simulationrofrallustrial process in soft
real time. Process simulators must provide measuremeitie afdustrial process to the
testbed in the form of “inputs” to the virtual devices. Thasputs will depend on the
physics and state of the simulation. Moreover, the simutatiust respond to control from
the virtual testbed from virtual device “outputs.” For exalm if an electrical substation

66

www.manaraa.com

is being modeled, a vdev throwing a breaker in the simulagimuld cause the associated
bus current to go to zero. As another example, suppose aymmire a simulator is
controlled by a motor’s speed. If the motor speed is set byrdrathng vdev to 0, the
conveyor should stop, while if the speed is set to a value leyioe intended operation of
the conveyor (but within the limits of the motor), the regutprocess should be affected
accordingly.

While the process of specifying a process simulation willagls be domain-specific
and require specialized knowledge, the simulator can dasebtirden by specifying a
simple framework for designing simulations. This was a gbat motivated the design of
the simulator.

In the following sections, the design, and use of the sinutaframework are dis-

cussed, followed by descriptions of the simulation systelready developed.

5.1 Design

The process simulator consists of four components: a storul@odule that executes
simulations, coordinates states, and sends and receidasagfrom virtual devices; indi-
vidual simulation modules which represent the systemsgoeiodeled; the configuration
files controlling the setup and execution information of¢hreulations; and the communi-
cations interfaces designed to facilitate simple modificedf the communication medium
between the simulator and the virtual devices. Essentiaidysimulation framework sep-
arates the simulator, which executes the simulation ancometes communications, with

each process simulation. The simulation framework arctite is shown in Figure X.

67

www.manaraa.com

/ Update \
"] Queue

Y
UPDATES IN
Simulation
SIMULATOR
INTERFACE
{Loaded fram file)
UPDATES OUT
A New oulgoing update [j
Figure 5.1

Simulator Architecture

Each process simulation exists as a Python class; a simulgass is imported by the
simulator to run a particular simulation. Simulation cles$iave the responsibilities of
reading the configuration file, setting the simulation intaratial state, and implementing
the time-based simulation. The configuration file contaimiermation about communi-
cations interfaces and can also contain important simutainstants, like flow rates or
motor speeds, that a user might want to set or customize fipartthe simulation. Pro-
cess simulations are discrete-time based and is writtearing of the effects in the change
of time since the last simulator iteration. Information absimulator state, including cur-
rent measurements, inputs, outputs, and any relevant dét@relevant to the simulation
is maintained internally. Each simulation class must dongastep() method; the step

method simulates the passage from the end of the last sioukdcond to the time given

68

www.manaraa.com

in the argument “upto” to step(). The step() method uses tineent state, the amount of
time that has passed from the current time to the “upto” tiamel models of the process
to determine the next state of the simulation.

The simulator also is a Python module that runs as a singleepso The simulator
must handle not only stepping the simulation, but also @bt changing state variables
from the outputs of the vdevs. The simulator process imposggecific simulation (based
on a command line switch), initializes that simulation, @hen enters the main control
loop. The loop is executed when an update packet is received & vdev, or when the
wait times out, whichever occurs first. Each update conthi@gime at which the update
was sent (and thus should take effect). When the simulateives an update packet, it
simulates up to the time that the packet should take efteet, the changes from the update
are applied. This process continues until no more updagegetrin the receive queue,
and then the simulation is stepped to the current time. Whesitmulation is current, an
update is compiled of the current state of the inputs to thevscnd sent to the vdevs;
there is a brief wait, and then the loop continues again. Akatgs arrive asynchronously
to the simulator, and may affect intermediate simulaticsults, it is important that no
update is ignored, but occurs at the correct time in the sitoul Because of the design
used for this constraint, the simulator is in practice alsvalightly behind the current
time. However, the amount of time between simulation rurs @gpdates in practice is
quite small (milliseconds or tens of milliseconds). The amtoof time between runs

may be controlled by the user to be much smaller than the \ailuently used; the larger

69

www.manaraa.com

delays have not been shown to negatively impact performavitée shorter delays greatly
increase the amount of processing required by the simulator

The simulator interface accepts and provides updates téramdthe simulator about
relevant inputs and outputs of the device. The main logibesimulator interface is writ-
ten in just three functions: processUpdate(), applyUndleded compileUpdate(). proces-
sUpdate() decodes an update message from the vdevs intbandry of (“Pointname”,
“Value”) pairs of inputs from the simulator; processUpdaie run when an update packet
is received by the simulator, and the returned dictionanlasged on the update queue.
applyUpdate() takes this dictionary as a parameter ancetsrtbe value of each updated
point to the value from the update packet; applyUpdate(nied once for each update
packet. compileUpdate() creates an update of the outpotgpt send back to the vdevs.
Presently, updates are encoded using JavaScript Objeati®io{JSON). JSON encodes
data objects as strings formatted as Javascript objerlbteJSON representations may
be contain associative arrays, lists, strings, numeralsglans, and nulls. Lists and asso-
ciative arrays may be hold any type of JSON data, includisig and associative arrays.
JSON was selected because it is supported by many standiandds in many languages,
is sufficiently flexible that changing simulation semanticgl variable names and types
requires no reconfiguration of the encoding (as a fixed bifamyat would), and as a
plaintext format, it is easy to debug and can be written gdsilhumans. The commer-
cial process simulators discussed in Chapter 5 likely validntheir own data interchange
formats. For these reasons, the simulator interface mag teesupport other protocol
formats. To add new support for simulator interfaces, ohby three functions: proces-

70

www.manaraa.com

sUpdate(), applyUpdate() , and compileUpdate() will nexele overridden to perform the
corresponding tasks for whatever protocol formats are Gtluéhe testbed.

Currently, simulator updates are sent and received using/lFDdatagrams. UDP
offers low overhead and can be used when the virtual devicedtse simulator are all
run on a single host, on virtual machine hosts, or multipkritiuted hosts. However,
a Python module, ifaces.py, was created to provide a netagniostic communications
interface for simulator messaging so that simulator mesgacan be extended to use
TCP/IP, unix pipes, serial ports, or other communicatioeshods. A base class specifies
initialize(), sendMessage(), getMessage(), and shut@owathods that create and open
the connection, send update messages, receive updateyerssad close the connections,
respectively. The ifaces classes are also used to providigcasi communications by
specifying a list of recipients for sendMessage; this sifiggl sending simulator updates

to many virtual devices.

5.2 Simulated Systems

Simulations have been implemented for the ground tank apélipe systems de-
scribed in Section 4.5. This section shows the main varsabléhe simulations in com-
parison with the laboratory systems.

Figures 5.2, 5.3 and 5.4 shows the ground tank levels undeilaiion and in the
laboratory. Subfigure 5.2 shows the laboratory and virtysiesns set in manual mode to
increase from minimum to full level; this figure shows that tthange in level in the two

systems is nearly identical. Subfigure 5.2 is the opposite@previous figure and shows

71

www.manaraa.com

the laboratory and virtual systems set in manual mode toedserfrom full to minimum

level; this figure also shows that the change in level in tredwstems is nearly identical.
Subfigure 5.4 shows the two systems starting from emptyghelsced into auto mode,
and then turned off after several pump cycles. In this exapible virtual system was
allowed to run for more cycles than the laboratory systermdwer, the behavior of both
systems is similar.

Figure 5.4 shows the pipeline system pressures in the Vatgblaboratory systems in
auto mode. The graph shows that a greater pressure varigts@en around the setpoint
in the laboratory than in the virtual system; this is due toechanical switching delay
in the valve solenoid that is not modeled in the simulationspite of this difference, the

behavior of the two systems is largely the same.

5.3 How to create a new simulation

This section details creating a new process simulation tesstbed. Creating a sim-
ulation entails creating a new simulation class. This ci®suld contain a constructor
that reads configuration information from the configurafite stores relevant simulation
parameters, and instantiates and initializes the comratiaits interface. The configura-
tion file should include information about what type of ifiéexe to use to communicate
with the virtual devices and interface parameters like esises or ports. The configuration
may also include simulation information like motor speeald Borques, tanks sizes, or any
other parameter that may be useful for a user to customizesifiulation class must also

implement a step() function; helper functions to aid in modgthe physical system may

72

www.manaraa.com

100F '

40

Percent Full

20

— Laboratory System
— Virtual System

| | |
0 50 100 150 200

Time (s)
Figure 5.2
Ground Tank Empty to Full

73

www.manharaa.com

Percent Full

100

40

20

—— Laboratory System
— Virtual System

1 1 1 1
50 100 150 200 250
Time (s)

Figure 5.3

Ground Tank Full to Empty

74

www.manharaa.com

7 D T T T T T

Percent Full

—— Laboratory System 1
— Virtual System

1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 200
Time (s)

Figure 5.4

Ground Tank Simulation Comparisons: Ground Tank Auto Mode

75

www.manharaa.com

10 |
81 .
T ol ﬂ
g
=1
@
g
(o al i
2+ .
— Laboratory System
| — Virtual System
0 | | i B
50 100 150 200
Time (s)
Figure 5.5

Pressures of Pipeline Systems in Auto Mode

76

www.manharaa.com

be written as necessary. The step() function should reherstate of the process at the
“upto” time, based on the simulator’s current state and thieenit inputs to the simulation.
While each system will present its own challenges in defidaithful simulations, this
process of writing the step() method will typically entadfohing equations that govern
the system as a function of time; these will most often be dasehe physics of the sys-
tem to be controlled. Python mathematical toolkits, likenNRy or Sage, may be useful
for in defining and solving these equations — especiallyessystgoverned by differential
equations. It may be desirable for security research to migtaescribe normal operating
states, but also failure states, such as a motor overheatatank rupturing — especially
if these failure states could be caused by certain conttmras: This allows for attacks to
be tested and captured that would be inadvisable in real IG&boratory scale ICS due

to the damage that would be caused.

77

www.manaraa.com

CHAPTER 6

VIRTUAL ICS DEVICES

This chapter details the virtual devices, termed “vdeusgt tare the primary compo-
nents of the virtual testbed. The purpose of the vdev is tolamihe behavior of ICS
devices like programmable logic controllers and electrid telays. Vdevs interface with
simulators (in the same manner that the actual ICS devitedace with the physical pro-
cess under control), and they also communicate with othevsrdnd actual ICS devices
using ICS protocols. Vdevs must be able to handle all of tiyechd tasks expected of an
ICS device. This includes reading inputs, writing outpaisgd processing control logic.
This also includes communication with other ICS devicese @Qatable goal specific to
this testbed project is that it should be possible to chaygees aspects like commu-
nications protocols by only changing the configuration fgt(al testbed configuration
files are discussed in Subsection 4.2.3) — vdev logic andr atteracteristics should be
unaffected. This is a functionality above what is typicallpvided by ICS systems, and
it motivates abstractions between protocols, data, and.ldgpically, ICS data stored in
actual devices is described in terms of a particular prd®data model — not indepen-
dently of it. For example, PLCs that use Modbus as a primangroanications method
will denote data to be stored in 16-bit “registers,” and ttata will be referred to un-
ambiguously by the Modbus-style register address. Thishmdrance to being able to

78

www.manaraa.com

describe system logic independent of protocol. For thisaeadevice logic and behavior
is described in terms of the data to be stored; discrete tatesilike individual measure-
ments, calculations, or setpoints are all stored as indalidbjects termed “Points” in the
virtual testbed. Other tasks often performed by an ICS dewiclude acting as FTP or
HTTP servers. This functionality is not provided nativeithe vdev itself. However, the
functionality may be emulated by running an FTP or HTTP seal@ngside the vdev in a
virtual machine. Other services may also leverage Pytreté&nsive library to implement
a server if required; modules are available for FTP and HTTP.
The following sections discuss the design of the vdev and veh@equired to imple-

ment a new vdev instance.

6.1 Design

The vdev is implemented as a Python module. An instance ota mths as a single
multi-threaded process that acts as a single PLC or othelfig@nt device in the virtual
testbed. Many such instances can be run to populate a te#teganay be executed inside
a single or multiple virtual machines, a single PC, or onritiated PCs. Vdev behavior
is determined at runtime by command line switches to indiegtich system and which
device should be run; these command line switches are netepin terms of the con-
figuration file for the testbed. A vdev holds a certain numidé€points.” Points are data
objects that are held by the virtual device; point objegsesent data that would be mea-
sured or stored by an actual physical device. Each vdevriostaxecutes a user-defined

process control function that reads the current valueseoptints, sets new values as ap-

79

www.manaraa.com

propriate to modify the execution of the process. Each di@tof the program is termed,
as in PLC terminology, a “scan”. Vdevs also implement O oren@S protocol clients,

which request information from other devices, ICS serveisich respond to requests
from ICS clients, and simulator interfaces which exchamfermation about the status of

virtual inputs and outputs. Figure 6.1 shows a diagram ofitteal device architecture.

| Simulator |
[

Y

/ Simulation Interface ‘ \
i

VDEV | L _
- ICS Server A [« I\I;I)evu:e Process
VDEV | ICS ServerB |, VIEMOIY <—= ~ontrol
___(Points) | Logic
ICS Client A "* Requests, Responses
VDEV ICS ClientC [* Requests, Responses
VDEV ICS ClientD [* Requests, Responses | -o-ood from fll)

Virtual Device J

Figure 6.1

Virtual Device Architecture

6.1.1 Points

Points are data objects that are held by the PLC. The poiss @las created to create

a protocol-agnostic interface and nomenclature for dajectd This allows ICS clients,
80

www.manaraa.com

servers, and process logic to refer to the same data obgeptstocol dynamics and mem-
ory models change without having to modify any code — onlydbefiguration descrip-
tions. These points may hold a value of any data type — intexjeng, floating point,
binary file object, or even a Python class. This is made sifoplBython’s dynamic type
system.

There are three types of points (determined by a memberblarat the Point in-
stance): inputs, outputs, and internal points. Inputs amggwhose values are determined
externally by the process simulator or another vdev. Ouipirits are points whose values
are computed or set by a vdev and shared with other vdevs sirtheator. Internal points
are meant to store state variables, intermediate valuedaflations, or any other data that
does not come directly from other parts of the testbed oraseshoutside a particular vdev.
These classifications are used for determining how the vdedllas certain points (like
sending out updates to the simulator) but are not strictfgreed. Each point instance is
unique to a virtual device, and is specified and designateddastionary in a list of vdev
points in the configuration file. When a vdev is started, tissdf point descriptions is
read and a list of corresponding Point objects is createtht®are represented uniquely
throughout the vdev by a “name” string; this name must bewsntq each pointin a vdev.
The point description contains metadata for each protdaild given device in a virtual
testbed supports; the metadata holds protocol-speciboirdtion. In the case of Modbus,
this includes the register address, the block type, anddteetgpe, and any fields required

by the underlying protocol layer.

81

www.manaraa.com

An example pointdescription{s nane’ :’ Level Rawm nput Reg’, 'typ’ :1,

"val ue’: 3563, 'netadata’:{ 'nodbus’:{ 'addr’:0, ’blocknane’
:'inputreg’, ’'blocktype :4, 'datatype’:’uint’}}}. This string de-
scribes a Point used for vdev input (meaning the value conoes the simulator). The
name of the point is “LevelRawInputReg,” its initial valle3563, and the Modbus meta-
data that indicates that it is an input register of addressumsigned integer type. Every
aspect of the point description is read and stored into thet Bbject it describes, so the
information is accessible at all times.

Points may be referenced directly, or by PointView obje®@sintView objects may
be used when a modified representation of a Point object dededut if the modified
representation is written to, the referenced Point objisct ehanges. One example use of
a PointView object is to express 32-bit floating point value$6-bit chunks to satisfy the
memory model of Modbus. For example, if the lower 16-bits fbating point register are
written by a Modbus Write command, the point value shouldhgeaaccordingly; Point
view objects simplify this behavior. Point objects also o callbacks when set for
logging, value testing, or other purposes. Writing thedigtoints can be cumbersome for
large numbers of points; a useful technique is to createemsggheet containing all points
and their individual parameters and generate the pointrigiien from the spreadsheet

values.

82

www.manaraa.com

6.1.2 Control Logic

The control logic is meant to directly emulate the contradl amonitoring functions
of an ICS device. Control logic is specified as a single Pythumttion separate from
the vdev implementation; the control logic is loaded at imet The control logic is
called at specified time by a logic control thread; this thrakso synchronizes simulator
communication (see the next subsection for details). Theesaontrol logic function may
be used for multiple slave devices to allow code reuse. Bsocentrol logic in actual ICS
systems consists of reading inputs and setting appropigfuts. For example, a PLC
may turn on a pump when a measured pressure reaches a lowThaisi¢ype of behavior
is accomplished when the control logic reads the values e¥ yaints (especially inputs)
and writes new output values to affect the state of othero#svand the simulated process.

The following Python code is an example of a section of precesitrol logic from the
Ground Tank virtual testbed. This code checks the pointsrog system mode, the level
setpoints (high and low), and the current status of the pungetermine whether to turn
a pump on or off. It is important to note that this code is etyiprotocol independent —
there is no mention of addressing or point types. It is pdsgicheck those features as
they are accessible through the Point objects themselvedssary; an example is that
it may be easier to describe a large group of Points objectsohgecutive addresses in
one protocol, but the same work will be done on those poirgarddess of ICS protocol
in use. When referencing some aspect of a point’s protoadlgular metadata, the same
behavior for different protocols will still be achieved d®tmetadata stored in the point

is constant and does not change based on protocol usagedsdhed selects a group of

83

www.manaraa.com

points by a Modbus address will select the same points evbg ifdev is only being used

to serve DNP3 data at a later time.

Determine if pump should be turned on
if {points['SystemInAUTO'].get() and
not points['HighLevelFloat'].get() and
(points['LowLevelFloat'].get()
or points['PumpRunCmd’].get(} }):
points['PumpRunCmd'].set{True)
elif (points['SystemInMAN'].get(} and
points['"MANPumpRunCmd'].get()):
points['PumpRunCmd’'].set(True}
else:
points['PumpRunCmd'].set (False}

Figure 6.2

Sample Process Control Logic

6.1.3 Simulator interface

The simulator interface accepts and provides updates téramdthe simulator about
relevant inputs and outputs of the device. The simulatentlreceives update messages
and is run in a thread in the vdev process; received messaggsaressed and placed
on a queue to be applied at a later time. The logic of the sitouiaterface is written in
just three functions: processUpdate(), applyUpdate@, @mpileUpdate(). processUp-
date() decodes an update message from the simulator intdiandiry of (“Pointname”,

“Value”) pairs of inputs from the simulator; processUpdaie run when an update packet
84

www.manaraa.com

is received by the simulator, and the returned dictionapjased on the update queue. ap-
plyUpdate() takes this dictionary as a parameter and setgatue of each updated point
to the value from the update packet; applyUpdate() is caltexk for each update packet.
compileUpdate() creates an update of the output pointsi Isack to the simulator. After
each individual update is applied, the process controklagrun, and then compileUp-
date() is run to create an update that is sent back to the aiamul

Currently, the format used for the simulator interface igadaript Object Notation
(JSON). JSON encodes data objects as strings formattedascdiat object literals. JISON
representations may be contain associative arrays, $isisgs, numerals, booleans, and
nulls. Lists and associative arrays may be hold any type ONJ8ata, including lists and
associative arrays.

As JSON is a text-based format, it is simple for humans tajméet and write; this aids
in debugging the simulator communications. However, ifiganumbers of points were
being exchanged between vdevs and the simulator, this famag become a bottleneck.
Also, the commercial process simulators discussed in @hdptikely will have their
own data interchange formats. For these reasons, the sonuhéerface may need to
support other protocol formats. To add new support for sataulinterfaces, only the
three functions: processUpdate(), applyUpdate() , andpdetpdate() will need to be
overridden to perform the corresponding tasks for whatpratiocol formats are added to

the testbed.

85

www.manaraa.com

6.1.4 ICS protocol interfaces

Industrial Control System protocol interfaces commur@dagtween vdevs and other
ICS devices using actual industrial control system prdscdhese interfaces create the
network traffic that the vdev is designed to generate. Algjinoine terminology is not nec-
essarily used in all ICS procotols, all protocols can be ¢fiwf as client-server systems.
Clients can be loosely defined as devices that poll othercdsvior information, while
slaves are devices that provide that information. The useatient-server paradigm sim-
plifies the design and use cases of the interfaces for thesumnause clients and servers
can be implemented independently. This is helpful, as satkegsymay be clients, some
may be servers, and some may be both a client and a server.

For implementing the protocol interfaces in the virtuakibesl, two Python modules
were created: ics_clients and ics_servers; these modueseant to contain implemen-
tations of protocol clients and servers, respectively. sehienplementations may wrap
existing Python libraries, be created from Python bindiegsready written code in other
languages (like C or Java, if Jython is used), or be desigmed $cratch. Base client and
server classes were written to outline the software intertaf the clients and servers for
new protocol implementations; actual protocol clients aexvers can override the meth-
ods from these base classes. If uniform methods are usetidot and server interfaces,
protocols can be changed without having to change virtuatcddogic. Switching from
one protocol to another can be done by instantiating a @iffidlCS interface Client/server
type, and the change will be invisible to the rest of the vdear this reason, client and

server base classes were written with certain attributdsvagthods that are common to

86

www.manaraa.com

all protocols. All protocol interfaces assume they will lnoected to actual communi-
cations ports; this may be a network connection or a seridatde For testbed use cases
where external connections to other vdevs on other hostsamttial devices are necessary,
this assumption is helpful; if only internal connection®tber vdevs are required, virtual
networks (enabled by virtual machines as vdev hosts) araligerial ports can be used.

The ICS Server base class requires four methods to be imptedhe _init__ (), start(),
stop(), and exit(). These methods names were chosen to beatibihe with their coun-
terparts in Python’s Thread class; this design choice allfmw management of any ICS
server as if it were a single thread. While all ICS Servers$ @ahtain at least one thread,
some may contain more that one thread, and in any case itpfuh&b isolate the par-
ticular protocol’s thread details from higher levels of testbed system. The __init_ ()
method in Python takes the role of a class constructor atidlirer; this method should
initialize an ICS server based on protocol configurationfinfation from the configuration
file such that the server can be run by calling start(); thig malude creating protocol
library objects, threads, or logging. start() should stdratever threads are necessary for
the server instance to respond to requests; stop() shdel¢ sautdown the server object.
exit() calls the stop() method, and is meant to be compatiftie the methods of Thread
objects.

The ICS Client base class requires three methods to be inepled. init_ (),
read_points(), and write_points(). ICS Clients, unlikeSIServers, generally are not
threaded; rather, requests are initiated by the processotérgic, which blocks to await
aresponse. To promote protocol generality, the two bagcations that all protocols sup-

87

www.manaraa.com

port are reading points and writing points, irrespectiveanht type or protocol. read_points()
takes a list of points (named for the points on sieeve)), and the values read are returned
as a tuple in order corresponding to the list of points retpaesvrite_points takes a list of
points and a corresponding list of values those points shaeiket to and does not return a
value. Itis the responsibility of child classes to take thedf points (along with the values

to be written in the write_points() case), parse them adngrtb protocol metadata, and
create suitable requests. Additionally, a client instaeceated for each possible server
connection; these client instances are passed in a dicyikeged by the slave name to

the process control logic.

6.1.4.1 Modbus Implementation

Two protocol interfaces have been implemented: Modbus/RRd Modbus/TCP.
Both were created by patching and wrapping the Modbus-TKid&tytModbus library.
Modbus-TK was chosen over a competing Python library PyMedizcause Modbus-TK
was more stable and had fewer bugs, although PyModbus pedmisre features (like
more extensible function codes). Modbus-TK was chosen iovegrating other libraries
from C for ease of rapid prototyping. Modbus-TK, like many dbois libraries, imple-
ments Modbus clients and servers separately. Also liker dttoelbus libraries, Modbus-
TK maintains its own store of memory addresses correspgrtdithe data stored by the
Modbus device; by default, these are independent of any otlta storage mechanism.
In order for the requests and responses to contain valuesstent with the data from

the rest of the vdev, the Modbus-TK datastores must be ugdatgtime a Point value

88

www.manaraa.com

changes in the vdev. Rather than having consistency chegkeae a request or response
is received, or a point value changes, the Modbus-TK libveag patched to store not only
values but references to PointView objects. When a valuead from a datastore address
by the Modbus-TK clients or servers, if a PointView refererestored in that address, the
value of the PointView is read. If that address is written bMi@dbus write request, the
PointView object is written, and the Point value correspogdo the PointView changes
accordingly. The Modbus-TK library was also patched to ¢gfearead behavior to match
that of MSU'’s laboratory PLCs. The laboratory PLCs ignonmgeg@ort data until they see
the expected address of a Modbus packet, then they atterpptde the rest of the serial
port data for the length of the expected packet; the ModhGébrary was patched so that
when a request or response is being received, the same behavhe laboratory PLC
occurs.

Because the Modbus-TK library uses the same interfacesforad TCP clients and
servers, Modbus child classes of ICSClient and ICSServes areated to share code that
would be common to both TCP and RTU systems. ModbusTCP andMiTU clients
and servers subclass from the generic Modbus class. BotMdtabusTCP and Mod-
busRTU Server classes implement one method: _make_ gethes(method instantiates
the appropriate server from Modbus-TK. Likewise, both thedidusTCP and Modbus-
RTU Client classes implement one method, _make_clieht},ibstantiates a Modbus-TK
client.

Modbus-TK handles server threading automatically; thisunsethat the primary job
of the server class is to set up the server, start it, and st@pkey part of setting up the

89

www.manaraa.com

server is creating the Modbus-TK datastore. The datastaliedates the memory model
used by this server, or more precisely, slave instance; #raary model determines the
types and addresses of Modbus coils, digital inputs, hgldagisters, and analog inputs
that are present in a given slave. Because the memory moaegiek from device to de-
vice, memory models are written into the ModbusServer ctagsmemory model used in
a device in the system is specified in the testbed configuréitea Two memory models
are provided: a test memory model and a memory model thasepts Control Microsys-
tems PLCs. When the datastore is created, any points arplatsed into their respective
Modbus addresses in the datastore.

Modbus-TK clients have the chief responsibility of takingsh of points and (some-
times) values and forming reasonable requests from thernalde a user may write in
the program logic to request variables of many differenes/pr disparate addresses at
once, the request logic must take the list of points giveaygrthem by register type and
address, and then send requests that read or write the nmbigfLemus addresses at a time.
Request grouping is done because Modbus reads and writesarkron multiple con-
tiguous addresses at once. For read requests, if two pomiess than or equal to five
registers apart, a single read request will be generatebldibr of them; the extra values
that are read are discarded. In the case of write requesigddresses must be consecu-
tive for values to be written, otherwise the registers imeen the two points to be written
will be overwritten with zeros. Once a read request is s@rtappropriate response values

are paired with the points that prompted the request, andrdtarned.

90

www.manaraa.com

6.2 Implementing a vdev

This section discusses the process of implementing a vde/steps include establish-
ing writing the vdev configurations and writing the devicgito Before writing configu-
rations or device logic, the role of the system must be pldnfi® determine the vdev’s
role, knowledge of the ICS network connections is requit®glecifically, this entails de-
termining how many clients and servers of which protocolslve necessary for the vdev;
this also includes determining the physical layer inteefadike serial ports or networks.
Also important in to the role of a vdev is the inputs and ousgatthe simulator. Also, how
the vdev will control and interact with the process and otterices should be carefully
considered.

The configuration for a vdev consists of ICS protocol integfanformation, simulator
interface information, and point information. ICS protbirdormation consists of lists of
server interfaces and client interfaces. Each entry inlistiswhich should contain proto-
col type and relevant information like ports or addressessates an interface. Simulator
interface information is similar. First in creating the ptsi list is to determine the simula-
tor outputs and inputs to the system and account for themeipdints list. Second is to
determine the values that will be read and written by otheioés. Third, auxiliary points
must be identified; these are points used to store statessmetliate calculations. If repli-
cating an existing system, creating the points list requirdy duplicating the points from
the actual system, and ensuring that the metadata (ingjugge) is similar.

The process control logic is the implementation of how isptot the vdev affect its

outputs. As such, all possible inputs and outputs shouldcbeumted for in the vdev —

91

www.manaraa.com

even those that are unexpected. Additionally, the processa logic determines when
ICS clients should send requests inside (or separate frloengdntrol scheme. If repli-

cating an existing system, logic should be “translatedthfaily from the native device

format into Python.

92

www.manharaa.com

CHAPTER 7

EVALUATION

Chapter 1 outlined the hypothesis to be tested in this thisssrepeated here:

It possible to:

1. Create avirtual testbed framework using Python to cidiatzete testbed
components

2. that is designed such that the testbeds are interopesdthiegeal ICS
devices and

3. that virtual testbeds can provide comparable (within @@%larity) ICS
network behavior to a laboratory testbed.

The first clause is effectively evaluated by the design dietson presented in Chap-
ters 4, 5, and 6 and the implementation of the testbed. Thendeand third clauses are
evaluated in this chapter. Section 7.1 describes how thieg#$s interoperable with ICS
devices, affirming clause two. Testing clause three is lgagbtforward than clause two
because verifying “comparable” network behavior has nonbled requirements. Ensur-
ing interoperability involves simply connecting systemsl aerifying behavior, but there
have been no published requirements as to what charaicteast required by the research
community out of a virtual testbed. In fact, interoperdpiknsures a certain amount of
guarantee as to the similarity of performance of the virtesibed to a laboratory system.
A second important criteria for a virtual security testbedhe ability of the testbed to
exhibit similar behavior to ICS attacks; this is evaluate@ection 7.2. Finally, to quan-

titatively compare the virtual testbed network traffic te taboratory testbeds, numerical
93

www.manaraa.com

similarity scores were developed for key behaviors. Bee#lusre are no established quan-
titative guidelines for virtual testbed similarity, a “lleguess” approach was taken — the
virtual systems should aim for 90% similarity metrics asatstg point. This value was
chosen arbitrarily, and if researchers need a higherfidstbed, they may take advan-
tage of the openness of the testbed to work to improve thetgcmeThese quantitative
comparisons are developed and results are provided inoBeciB8. In the case of both
sytems, a majority of the metrics meet the stated goal. Thépier deals mainly with

network behavior; for a discussion of process simulatianilarity, see Section 5.2.

7.1 Virtual Testbed Integration with Actual ICS Devices

This section details how the virtual testbed has been iatedwith ICS equipment and
communications devices. Specifically, the virtual testbedces have been connected to
each other not through virtual serial ports, but physicabsports connected to ICS radio
equipment. Using these radios, virtual masters have beeadpaith laboratory slaves,

and laboratory masters have controlled virtual slave @svic

7.1.1 Integration with ICS Radio

The virtual testbeds have been integrated with ICS radipsaee interoperability with
ICS communications equipment, as well as to show that thealitestbed can be used to
test ICS equipment for vulnerabilities (discussed in thet section). The radios used
are the proprietary radio system discussed in Chapter 3.radies were connected to a

USB serial port device to the virtual testbed host machirechiof the virtual devices in

94

www.manaraa.com

both virtual testbeds were connected to individual Porgargnstances; each instance was
connected to one serial port and created a pseudotermatad thirtual device connected
to. Essentially, the PortLogger was acting as a virtual “ptimthe-wire” logger for both
physical serial ports. Naturally, both logs will containplicsate entries; however, both
are required to have a constant amount of delay for both mgstend to not generate
imbalanced traces where one device appears much fasteththather. In analysis, the
two logs are combined by taking tineceivedpackets from each log and placing them in a
new trace according to timestamp order. Laboratory systaffictwas taken using serial
tap cables placed between each PLC and radio, and only eecpackets were logged.

Figure 7.1 shows how the virtual devices were connectedetoatiios.

a z 2
‘[PortLogger }—{Serial Port 1]7

—[PortLogger }{Serial Port 2]7
/

Master VDEV

Process
Simulator

Slave VDEV

Figure 7.1

Virtual Device Radio Integration Testing

95

www.manaraa.com

Tables 7.1 and 7.2 show similarity metdec®mparing the virtual and laboratory ground
tank systems in off and auto mode. The auto mode laborat@tyiacontains 2248 pack-
ets sent over 599 seconds, while the auto mode virtual Gaptntains 2195 packets sent
over 1081 seconds. The off mode laboratory capture congaiB9 packets sent in 715
seconds, while the virtual capture of that system in off moaletains 2142 packets sent

over 1052 seconds.

Table 7.1

Similarity Metrics for Ground Tank (Off) Connected with Rasl

Name | Similarity | Average Error| Max. Error | Percent Errof]

Byte Frequency 0.06950 | 0.00153 0.09771 0.000%
Byte Throughput| 0.68553 | 32.68104 32.68104 | -47.847%
Error Count| 1.00000 | - - -
Function Code Count 0.99997 | 0.00003 0.00029 0.000%
Function Code Sequenge0.99962 | - - -
ID Sequence 0.99995 | - - -
Interarrival Time| 0.70904 | 0.23520 0.38586 91.694%
Invalid CRC | 0.00000 | - - -
Master-Master Interarrival Time 0.68438 | 0.47050 0.83835 91.781%
Master-Slave Interarrival Time¢ 0.78333 | 0.10551 0.25558 54.811%
Packet Sizel 0.99976 | 0.00864 8.50000 -0.037%
Packet Throughput 0.68570 | 1.86614 1.86614 -47.828%

As in the results subsection, the byte frequency metrioasdmd for the same reasons
discussed in 7.3: namely, certain (arguably irrelevani)eawere not simulated. In off
mode, the actual system had one packet with a CRC error, ewirinal system did not;
this leads to a similarity score of 0. All other non-timinghlagioral metrics, including

error count, function code count and sequence, and ID sequamd packet size, are

1See Section 7.3 for a discussion of the meaning of theseasetri

96

www.manaraa.com

Table 7.2

Similarity Metrics for Ground Tank (Auto) Connected withdRas

| Name| Similarity | Average Error| Max. Error | Percent Error|
Byte Frequency| 0.76628 | 0.00086 0.05964 0.000%
Byte Throughput| 0.70183 | 30.17597 30.17597 | -45.937%
Error Count| 1.00000 | - - -
Function Code Count 0.99995 | 0.00005 0.00046 0.000%
Function Code Sequenge0.99955 | - - -
ID Sequence 0.99999 | - - -
Interarrival Time | 0.72192 | 0.22645 0.37763 84.962%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.69990 | 0.45313 0.47920 85.022%
Master-Slave Interarrival Time¢ 0.94038 | 0.04079 0.16559 -11.936%
Packet Sizel 0.99998 | 0.00091 2.00000 -0.005%
Packet Throughput 0.70185 | 1.72424 1.72424 -45.934%

still very high after radio integration. The timing metriaghich range from .68 to .78

in the two comparisons, are not as high as the other beh&viwtiics. This is likely

due to three reasons. First, the lab system used non-latedaging taps for logging,

while the simulated system used two PortLoggers which astaas-forward loggers. The

method of logging likely skewed the timing results of the slated system. Second, the

virtual system was connected using a USB to Serial adaptetwio ports; this likely

added some transmission time delay. Third, the virtualksystas still calibrated for use

with a PortLogger, which may have also negatively affecteiresults by adding delay

where it may not have been necessary. In spite of the low aiitids in timing (which

can probably be accounted for with additional calibratidhg results show that all non-

timing-based behaviors of the virtual system were simuathe laboratory system. The

significance of this conclusion for an ICS researcher isith#tis case, implementing or

testing projects (like IDS) that depend heavily on timingacteristics with this setup

www.manaraa.com

may lead to erroneous behavior or inconclusive results. édew results from projects not

relying on timing can probably be trusted.

PC
Simulator

Slave VDEV

Serial Port

PortLogger

Master VDEV

LAB Slave

Serial Port

PortLogger

Figure 7.2

Real Device Interoperability Test Setups

7.1.2 Integrating a Virtual Devices with Actual Devices

In addition to connecting only virtual devices with ICS rasli it is possible to con-
nect virtual devices with actual laboratory devices. Bathreecting a virtual master to a
laboratory slave and connecting a laboratory master tataalislave were tested with the
pipeline system and found to be interoperable. The devies wonnected through the
ICS radios discussed in the previous subsection. Figurehib@s the test setups.

In testing, the virtual master was able to control and maritie real slave device to

run the process. Also, the real master was able to do the sathe wirtual slave; the

98

www.manaraa.com

real master was able to read simulated process values fsilabe. All system operation
modes were tested and were functional, and there were noanomunications errors

present in the system.

7.2 Virtual Testbed under Attack

This section details attacks performed against the tedtbe@rify that the testbed
can be used for testing attacks, not only generating “ndri@® traffic. This quality
is essential if the virtual testbed is to be used for secugearch. Three attacks are
presented. The first attack is a response injection attaittewby Wei Gao [33] and used
with permission. The remaining two are attacks against &uUsing vulnerabilities in the
ICS proprietary wireless system discussed in detail in @vah

The first attack assumes that an insider or other attackkiphitsical access has placed
a device on the serial line between the master and slaveadevibe ground tank system;
this device can monitor communications and inject commaamakresponses. For this
test, the attacking device injects a predetermined regpmse master read request once
every second; this response states that the tank level 3@2This attack is termed a
“One Hertz Injection Attack” , and this attack was perfornwedboth the laboratory and
the virtual systems.

To accurately emulate this scenario in the laboratory, bwdkter and slave were con-
nected to the host machine via USB serial ports; on the hoshime, a PortLogger con-
nected each serial port to a third PortLogger (acting inestorward mode). In the virtual

system, a similar set up was used, except the first two Pogersgconnected only to pseu-

99

www.manaraa.com

O

Master VDEV —{ PortLogger Attacker
Process

Simulator ™
Slave VDEV [— PortLogger
N, J
Figure 7.3

One Hertz Injection Attack Setup

doterminals. The attack code was compiled from the C soara&when run was assigned
to inject the packets on the PortLogger connected to theeviastthey could be logged.
Before the attack was run, the system was placed into autemod

Figures 7.4 and 7.5 show plots of the tank level as recordelddognaster over a period
of 5 minutes. In both systems, the sharp jumps from the cblegel range of 50-60%
down to 23% indicate that the attack was successful. Comgéne two graphs, it is clear
that the attack was effective against both systems; howtheeattack was more effective
against the virtual system than the laboratory system.

The time of sending of the attack packet is random with redpebe request/response
“rhythm” of the system; the attack succeeds when a mastelssemead request and the
first packet it receives is the injected packet. In the latooyasystem, any data sent to the
PLC before the request is sent is ignored. In the virtualesysthe data is buffered until
read by the ICS Client code. Because there is a greater tiideshtime for the attack
to arrive to be successful against the virtual system tharathoratory system, the attack

is more effective against the virtual system. Achieving ptete fidelity for this attack
100

www.manaraa.com

would likely require adding a flush() call before sending guest in the ICS client code;
this will be explored in future work. In any case, such bebamay be expected for two
different ICS devices under attack. For example, there guarantee that a Siemens PLC
and a Rockwell PLC will be vulnerable to this attack in exathie same way. Because
ICS systems consist of heterogeneous components, thardiffeehavior does not negate
the usefulness of the testbed.

The remaining attacks make use of the laboratory and vigipaline systems con-
nected with the proprietary wireless system. These attaskame that an attacker has
infiltrated the radio system.

One slave radio was attached to a PC to run the attacks fror.rdaios were con-
nected to a USB serial port device to the virtual testbed masthine. Each of the virtual
devices in the virtual testbed was connected to individwaill®gger instances; each in-
stance was connected to one serial port and created a pegudwl that a virtual device
connected to. Laboratory system traffic was taken usinglsap cables placed between
each PLC and radio, and only received packets were logged.

The second attack demonstrated in the system is a slavd desgavice attack against
the pipeline system using the ICS radios. The attacker, Wwglown slave radio, is con-
tinuously transmitting data to cause the legitimate skpeackets to not be received. The
end result is that a master will not have updates for the resg®sent by the slave, and
will store the same values for as long as the attack lasts.

Figures 7.6 and 7.7 shows the pipeline pressures receivitebyaster unit while the
systems are under attack. The virtual system is attackeghtp®0 seconds after the start

101

www.manaraa.com

40| :

30 .

Level Percent

20+ .

10 .

1 1 1 1 In
0 50 100 150 200 250 300
Seconds since start of simulation

Figure 7.4

Virtual System Tank Levels During Injection Attack

102

www.manharaa.com

62454

52.25=

42 06

31.86=

2181

51

of the

10 PSI

T
14231 PN
52612011

T
14143 PN
512612011

T
14054
526120

T
14005 P
512612011

T
13947
526120

T
13878 PN

T
13739 PN I
52612011

52612011

T
13651
5126120

T
1.36:02 PN

PH P PN
512612011 11 11 11

Figure 7.5

Laboratory System Tank Levels During Injection Attack

plot. Before the attack is run, the pressure in bothesys oscillates around the

setpoint. During the attack, the reported pressages stonstant, indicating a loss

of reading from the slave, which is still reading the corragtount and controlling the

pipelin

e. The constant value is seen after 50 seconds inriu@ahsystem, within seconds

after the attack is started; likewise, the Laboratory syssbows a constant value starting

at12:2

was re

attack

2:30 PM. Midway through attacking the laboratoryteys pressure in the pipeline
leased and manually held at zero to verify that thelatvas functioning. When the

is stopped, the correct reading is seen also witleinsks; this occurs around 12:28

in the laboratory system and 175 seconds in the virtual syste

In the third attack, the attacker transmits meaningless clansistently to create a de-

nial of service to the slave while simultaneously respogdoread requests. This creates

only one response for the master to choose from, and it gtegesthat the master receives

103

www.manaraa.com

1 2 T T T T]

10

|

Level (PSI)
)}
T
Il

(0] 1 1 I I
0 50 100 150 200
Seconds since start of simulation

Figure 7.6

Virtual Pipeline Pressures During Radio DoS Attack

104

www.manharaa.com

1147

A!\/\/\f\/\/\

YN U

§41-

565

265+

Figure 7.7

Laboratory Pipeline Pressures During Radio DoS Attack

only the values the attacker chooses. Figures 7.8 and 7v@ thlgopressures received by
the master unit during this attack. In both the laboratoythie simulation case, the attack
is started and within 30 seconds the pressure jumps to thekattspecified 27PSI. Once
the attack is stopped, the pressure returns to the corriec wathin a few seconds.

The similar behavior of the two radio attacks in both systeimsws that the virtual
testbed can be used to test ICS equipment. Although in soses @dtacks may seem to
be more effective against the virtual systems, they still lsa used to develop proof-of-

concept attacks against ICS systems.

105

www.manaraa.com

-
Cl
T

Level (PSh

|

i I. i
140 1EQ 200 2E0
Seconds sirce start of simulslion

S

Figure 7.8

Virtual Pipeline Pressures Received During Radio DoSéhiga Attack

106

www.manharaa.com

Figure 7.9

Laboratory Pipeline Pressures Received During Radio Dgfion Attack

107

o AJLb

www.manharaa.com

7.3 Traffic Fidelity Analysis

This section discusses the methodology and results of cangpiavo virtual testbeds
to the two laboratory-scale system from which they were remtieA guide to calibrating
the timing of a virtual testbed is also provided. Much of thmalysis is focused on timing
behavior, because timing can be very important to anomasgeth intrusion detection sys-
tems. While it is shown in Subsection 7.3.2 that it is possiblachieve low-error timing
in the virtual systems, in practice many applications wdt nequire this accuracy. Ex-
amples include applications of ICS device testing and sigeabased intrusion detection

systems.

7.3.1 Methodology

Comparing network traffic captures is a non-trivial task wioae considers the high
number of features that may be considered. Terry Bruggérd@geloped a methodology
for comparing IP network captures for use in IDS testing. IHmated “similarity met-
rics” which can produce a scalar value from 0 to 1 denoting biowilar two captures are
based on network and traffic characteristics; 1 is consittédentical,” while O is consid-
ered “not-identical.” Each metric measures a certain ataratic of the captures under
comparison; examples include number of hosts, traffic velyer unit time, number of

packets to each service, and range and frequency TTL valuBsgackets.

108

www.manaraa.com

7.3.1.1 Mathematics

There are four types of metrics: scalar metrics, discreteicseand ordered and sorted
continuous metrics. Scalar metrics, also termed “totallmemcharacteristics,” are metrics
that consist of a single value like number of hosts. Scaldrioseare defined by computing
a single value (or score) for each of two captures. Simylasftthe two captures with
respect to these values is definedsasvilarity = 1 — % wherezx,, z, are the scores
of the captures.

Discrete metrics are keyed integral metrics; that is, oteger score is calculated for
a finite set of key values. An example is a metric measuringbmirof bytes transmitted
per host; the host is the key, and the byte count is the scaatanDiscrete metrics are
calculated by taking the average of the similarity scoresech measurement. That is,

n

o 1 R . _ . .
similiarity = 1 — =y [2Li—ezil wherez, ;is the i scalar metric in the first capture,
n

T1,i+T2,i
1=0

and so on. Ordered continuous metrics are keyed non-ihtegreeal number, metrics.
This type of metric was not used for the evaluation of theuwartestbed and will not be
discussed further.

Sorted continuous metrics are based on applying a funatiarcapture that generates a
sequence of values; an example of such a metric is inteahtie between packets. Once
the two sequences are generated, their values are sortéldeasichilarity is calculated as:
similarity = 1 — %i% in the same manner as the discrete metrics. If one of

=0

the the sequences is longer than the other, the longer segjnaust be reduced to be of

the same length as the shorter for the metric to be calcutaigdctly. While a number

109

www.manaraa.com

of techniques would work for this, Brugger uses the follogvalgorithm to create a new

sequence from the longer sequence:

e For each element in the smaller list, calculate a “normdlizedex by dividing the
index of the element by the length of the shorter list.

— If the normalized index is an integer, append the value oktgrience at that
index to the new sequence.

« If the normalized index is a real, append the average of taevdfues of
the two elements in the larger list closest to that index.

In addition to Brugger’s metric types, for this work a fountietric type was developed:
the “sequence” metric. This metric measures sequencestiarpaof packets. As an
example, in a Modbus system, single-slave requests widydvbe followed by a response
by that slave with the same address and function code. Axbdilly, requests tend to be
sent in a highly deterministic order — a master may always registers from slaves 1,2,3,
before writing to slave 4, for example. Sequence metricewesated to ensure that this
deterministic behavior is present in the virtual testbedl rmwatches that of a real system.

This metric is more complex than the continuous metrics mlesd above. First, an
operationopis defined to return a value (number or string) based on a pdekseription.
In a Modbus system, the returned value may be the packetesahee slave address, the
function code, or another value. The set of res&tef op on all packets in a given
trace should have cardinality Second, a sequence lengthl aghould be defined; as an
example] will be 2 if a researcher is only interested in looking at s&tpes of 2 packets.
To compute the sequence metric, a tree is constructed for\edae result obp in the
capture, for a total dt trees. Each tree will be of height- 1, where nodes at depths up to

| havek children(one for each value R), and the final depth holds a count, initialized to
110

www.manaraa.com

0. To compute the countkpackets (indexed,, iy, .. .,7;) are selected in order from the
trace, andp is run on each packet. A tree is selected basedpdi), then a child nodes
are selected recursively by the valueopfi,,) until thelth node is selected based @i,),

at which time the child of th&" node (which contains a count) is incremented.

For an example, suppose we have the following sequence wévah a trace: [1, 2,
1,2,3,1, 2,1, 2, 3] and we define a sequence metric over thisesee with = 2. We
construct trees (described in Python-style dictionarytasgnwith R = {1,2,3}, so the
initialized trees would look like: {1:{1:0,2:0:3:0},2:{1,2:0:3:0}, 3:{1:0,2:0:3:0}}. The
first sequence selected would be [1,2], so after this sequisngarsed, the updated tree
would be: {1:{1:0,2:1:3:0},2:{1:0,2:0:3:0}, 3:{1:0,2:(B:0}}. The second sequence se-
lected would be [2,1], and the updated tree would be: {1:f:103:0},2:{1:1,2:0:3:0},
3:{1:0,2:0:3:0}}. After parsing the trace, the final treeoowd be: {1:{1:0,2:4:3:0},
2:{1:2,2:0:3:2}, 3:{1:1,2:0:3:0}}. The leaf nodes of thisee are the counts of particular
sequences of packets. The ordered lists of leaves for twedrean be used as arguments

to the discrete similarity described above to compute alaiityi score.

7.3.1.2 ModbusRTU Metrics

While Brugger’s methodology was useful in calculating esdior Modbus traffic char-
acteristics, the metrics that he defined for TCP/IP netwarksnot helpful for comparing
serial Modbus traffic. For this work, the mathematical dé&fmis of the metrics were
extended for use in Modbus RTU networks. The metrics weresamdo ensure that traf-

fic features that model-based intrusion detection systéke3d4, 75]) might use would

111

www.manaraa.com

be shown to be represented accurately in the virtual systdiine metrics used include
capture characteristics, packet characteristics, anidgicharacteristics. The following
metrics were defined:

e Byte Throughput — Count of total data bytes in a capture @ity the time from
the first packet to the last packet. Computed as a scalaranéthis metric was
included as it is a very basic, but important, descriptivérin®ef network traffic.

e Packet Throughput — Count of total number of packets in awapdivided by
the time from the first packet to the last packet. Computedsaskar metric. This
metric was included as itis a very basic, but important, desee metric of network
traffic.

e Error Count — Count of number of packets are marked as Modissonse errors
(the high bit of the function code field is set). This is dividiey the total num-
ber of packets to normalize comparisons between captur@iffefent sizes, and is
computed as a scalar metric. Error counts are measured amplaced because a
significant difference in errors indicates that two systérasdle incoming packets
differently (and not according to the specification).

¢ Invalid CRC — Count of number of packets with bad checksunhgs iB divided by
the total number of packets to normalize comparisons betwaptures of different
sizes, and is computed as a scalar metric. This metric isrtapioas invalid CRCs
may be indicators of attacks (especially radio jamming).

e Function Code Count — Number of packets with a given functiode (from 1 to
127), calculated for each function code. This is a discreg&im This is included
because the function codes and their proportions defineghavior of the network
— what data is being read and written.

e Function Code Sequence — This is a sequence metric that e®amins of packet
function codes. The length used is 2. This metric is used tidyvihat network
traffic proceeds in the same order in both systems — a verg bgsi important
feature.

e ID Sequence — This is a sequence metric that examines rurlavad Bs in Mod-
busRTU packets. The length used is 2. This metric is usedrityvbat network
traffic proceeds, particularly with respect to slave pagllarder, in the same order in
both systems — a very basic, yet important feature.

e Byte Frequency — Number of occurrences of a given byte in #ta flelds of all
packets, calculated for all bytes 0 to 255. Each byte coustaded by the total
number of bytes to normalize comparisons between captfichfarent sizes. This

112

www.manaraa.com

is a discrete metric.This metric was included because al movemaly-based intru-
sion detection system [78] uses the byte distribution of mam services to detect
intrusions in common applications like FTP or HTTP; thishieique has not been
applied to ICS.

e Packet Size — A list of all packet data lengths in the capturais is a sorted
continuous metric. This metric is included because diffefgacket sizes would
indicate that different amounts of data were being exchamg®ne system rather
than another.

e Interarrival Time — A list of the amount of time that passew\men two consecutive
packets for all packets in the trace. This is computed astadsoontinuous metric.
This metric acts as an aggregate of all timing informatiod ansures that traffic
proceeds at the same rate in both systems. As an examplig,rélisvant to intrusion
detection and attacks that rely on timing to inject packets.

e Master-Master Interarrival Time — A list of the amount of @rthat passes between
two consecutive packets sent by the Master device for altddakevice packets in
the trace. This is computed as a sorted continuous metrics mbtric acts as a
proxy to measure the time between requests, an importaeinsyesature.

e Master-Slave Interarrival Time — A list of the amount of tithat passes between
each pair of packets consisting of a Master packet followed Blave packet. This
is computed as a sorted continuous metric. This metric messin effect, the
amount of time it takes for a slave to process and responddquest.

7.3.2 Results

This section details the traffic fidelity test results for gigeline and ground tank sys-
tems (these systems are described in Chapter 4). For eaelmsystable of the similarity
metrics is presented, followed by an analysis. The tablegmts similarity numbers for
all metrics, while continuous and discrete metrics alse@néthe average error, the max-
imum error, and the percent error. An error list is computgguibtracting corresponding
elements of the simulated system metric list from the lafooyasystem metric list; lists
with differing sizes are accounted for using the same teglenas continuous metrics —

choosing corresponding elements by normalized indexesrafye error is the arithmetic

113

www.manaraa.com

mean of the error list, and maximum error is the maximum valu®e error list. Percent

avg(S)—avg(L

error is calculated a%err =)) whereaug() is the arithmetic mean operation

and$S and L are the simulation metric list and the laboratory metrit; lisspectively.

7.3.2.1 Ground Tank System

Table 7.3 gives the similarity metrics for a comparison @& ¢fiound tank simulation
system and the MSU laboratory scale system. The capture teka the MSU laboratory
system was acquired by directly connecting the master aw slnits with a tap cable
and recording the traffic; the system was left switched indfienode for 291 seconds,
and 2419 packets were captured. The capture taken from iiobahgystem was created
using a PortLogger with baud rate emulation with the virgyeitem also in off mode; 3173
packets were captured in 393 seconds. The same processaepeated to obtain system
captures of the systems in auto mode. The virtual systemraatte capture consists of
2045 packets taken over 255 seconds, while the laboratstgrsycapture contains 2268
packets taken over 272 seconds.

In the off mode comparison, the packet size similarity isrplying that both traces
have exactly the same distribution of packet sizes. Byt@ddinput and Packet Through-
put similarity metrics very close to unity (0.98493 vs. 3198, respectively); the closeness
of these similarities follows from the packet size simiiariThere were no error packets
present in either capture, leading to an Error Count siitylaxf unity; the Invalid CRC
metric is 1 for the same reason. The Function Code countaisti99996, indicating that

the same proportion of function codes is present in bothucapt similarly, the Function

114

www.manaraa.com

Table 7.3

Similarity Metrics For the Ground Tank System(Off Mode)

Name| Similarity | Average Error| Max. Error | Percent Error|
Byte Frequency 0.27601 | 0.00000 0.01613 -0.000%
Byte Throughput| 0.98493 | 4.32641 4.32641 -2.969%
Error Count| 1.00000 | - - -
Function Code Count 0.99996 | -0.00000 0.00032 0.000%
Function Code Sequenge0.99964 | - - -
ID Sequence 0.99995 | - - -
Interarrival Time| 0.93533 | 0.00366 0.06616 3.046%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.94912 | 0.00731 0.07220 3.038%
Master-Slave Interarrival Time¢ 0.91356 | 0.00548 0.01950 14.420%
Packet Sizel 0.99999 | -0.00083 0.00000 -0.004%
Packet Throughput 0.98495 | 0.24693 0.24693 -2.966%

Code Sequence metric of .99964 indicates that the functdesappear in the same or-
der in both captures. The ID Sequence Metric of .99995 indgcthat, true to the Modbus
specification, the slave system responds to master systefrtha master system sends
requests after the slave responds.

The Byte Frequency metric is low (0.27601) because the magstem reads four of
the slave’s analog input registers and two digital inputdy ehe first of these is relevant
(the tank pressure meter used to calculate the tank leveg.r@mainder of the inputs in
the laboratory system are unconnected and floating elalfyriecn the simulated system,
these are initialized to zero and unmodified by the simulaldre floating inputs add a
significant amount of noise to the byte counts for the lalmoyadystem, and skew the byte
frequency metric. This may be corrected in future work, dessary.

Timing metrics are also presented in Table 7.3. The maséeten interarrival metric

is 0.94912, while the master-slave interarrival similavias 0.91356, and the overall in-

115

www.manaraa.com

terarrival time metric stands at 0.93533 — all better thato9Table 7.4 shows metrics
for the ground tank system in auto mode; the similarity nastfor the auto case closely
match those of the off case. A notable exception is the byguiency, which is much
higher in the auto case. The auto case improves because tiyddiffarent values that the

levels take help balance out the influence of the floatingagnaadings on this metric.

Table 7.4

Similarity Metrics For the Ground Tank System(Auto Mode)

Name | Similarity | Average Error| Max. Error | Percent Erroy]

Byte Frequency 0.78891 | 0.00083 0.05283 -0.000%

Byte Throughput| 0.98057 | 5.54963 5.54963 -3.812%
Error Count| 1.00000 | - - -

Function Code Counf 0.99997 | 0.00003 0.00024 0.000%

Function Code Sequenge0.99966 | - - -
ID Sequence 0.99998 | - - -
Interarrival Time | 0.93928 | 0.01099 0.07736 3.940%

Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.94727 | 0.02302 0.08996 3.904%
Master-Slave Interarrival Tim¢ 0.92514 | 0.00488 0.06827 11.516%
Packet Sizel 0.99981 | 0.00513 8.50000 -0.027%
Packet Throughput 0.98070 | 0.31500 0.31500 -3.786%

7.3.2.2 Pipeline System

Table 7.6 gives the similarity metrics for a comparison & phpeline simulation sys-
tem and the MSU laboratory scale system. The capture takemtlhhe MSU laboratory
system was acquired by directly connecting the master ave sinits with a tap cable and
recording the traffic; the system was left switched in thenoffde for 283 seconds, and

2032 packets were captured. The capture taken from theal/Bjistem was created us-

116

www.manaraa.com

ing a PortLogger with baud rate emulation with the virtuadteyn also in off mode; 2259
packets were captured in 322 seconds. Captures of bothrsygteauto mode were also
taken in the same manner; the virtual system capture ca28iB6 in 287 seconds, while

the laboratory system capture contains 3320 packets sdffliseconds.

Table 7.5

Similarity Metrics For the Pipeline System (Auto Mode)

Name| Similarity | Average Error| Max. Error | Percent Errof]

Byte Frequency 0.08272 | 0.00156 0.10680 -0.000%
Byte Throughput| 0.99660 | 1.02567 1.02567 -0.678%
Error Count| 1.00000 | - - -
Function Code Count 1.00000 | 0.00000 0.00000 0.000%
Function Code Sequenge0.99961 | - - -
ID Sequence 0.99991 | - - -
Interarrival Time| 0.92439 | 0.01140 0.03107 0.702%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.98426 | 0.00923 0.04940 0.709%
Master-Slave Interarrival Time¢ 0.87664 | 0.01051 0.03107 20.318%
Packet Sizel 1.00000 | 0.00000 0.00000 0.000%
Packet Throughput 0.99660 | 0.04884 0.04884 -0.678%

The packet size similarity is nearly unity — implying thattbhdraces have the same
distribution of packet sizes. Like the ground tank resubgte Throughput and Packet
Throughput similarity metrics are nearly identical andyvelose to unity (both 0.98789);
the closeness of these similarities still follows from tlaeket size similarity. There were
still no error packets present in either capture, leadingrtderror Count similarity of
unity; the Invalid CRC metric is 1 for the same reason. Sintiks of 0.999 and higher
should, for practical purposes, be considered to be equahéao take into account the

error introduced by scaling the counts by the packet sizat{fig point division) and

117

www.manaraa.com

the other floating point operations used in computing thelarity score. The Function
Code count metric is 1, indicating that the same proportiofunction codes is present
in both captures; similarly, the Function Code Sequenceimet .99961 indicates that
the function codes appear in the same order in both captdies.ID Sequence Metric
of 0.99998 indicates that, true to the Modbus specificatioa,slave system responds to

master system, and the master system sends requests af&wh responds.

Table 7.6

Similarity Metrics For the Pipeline System (Off Mode)

Name | Similarity | Average Error| Max. Error | Percent Errof]

Byte Frequency 0.68909 | 0.00121 0.07145 0.000%

Byte Throughput 0.98789 | 3.61073 3.61073 -2.393%
Error Count| 1.00000 | - - -

Function Code Count 1.00000 | 0.00000 0.00000 0.000%

Function Code Sequenge0.99998 | - - -
ID Sequence 0.99998 | - - N

Interarrival Time| 0.91554 | 0.01185 0.06021 2.447%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time¢ 0.98107 | 0.01097 0.05039 2.442%
Master-Slave Interarrival Time¢ 0.85615 | 0.01207 0.01854 30.291%
Packet Size 1.00000 | 0.00000 0.00000 0.000%
Packet Throughput 0.98789 | 0.17194 0.17194 -2.393%

The byte frequency metric is low (0.68909) for two reasonsstfalthough the both
systems are in off mode and should have no pressure in thingpie laboratory meter
is miscalibrated, and 0.2 PSI is the lowest pressure thermelleread; this is not ac-
counted for in the pipeline simulation, which yields a 0 P®asurement. This affects the
byte counts significantly, but could be accounted for in theutator if necessary. Second,

the master system reads four of the slave’s analog inputergi only the first of these is

118

www.manaraa.com

relevant (the pipeline pressure meter). The remainderetatihoratory system are uncon-
nected and float; in the simulated system, these are iagidlio zero and unmodified by
the simulator. The floating inputs add a significant amoumta$e to the byte counts for
the laboratory system, and skew the byte frequency metric.

Timing metrics are also presented in Table 7.6The maststenanterarrival metric
is 0.98426, and the overall interarrival metric was 0.915%%e master-slave interrival
metric of 0.85615 does not meet the goal of 90% similarityisTill likely be improved
in future work; in any case, it may be the case that this lef/slnilarity is sufficient for
most purposes.

Table 7.5 presents similar metric values to those obtaiméake off case.

119

www.manaraa.com

CHAPTER 8

CONCLUSIONS

Presently, industrial control systems are insecure fraacks against confidentiality,
integrity, and reliability of service. Current securitckamiques are insufficient to stop all
known attacks, and many attacks have yet to be discovered.sfete of ICS security
research is hampered by a lack of an open, extensible, daitGE virtual testbed. In
response to this problem, this thesis has tested the faltphwypothesis:

It possible to:

1. Create avirtual testbed framework using Python to cidiateete testbed
components

2. that is designed such that the testbeds are interopesdibigeal ICS
devices and

3. that virtual testbeds can provide comparable (within @@%larity) ICS
network behavior to a laboratory testbed.

8.1 Contributions

A testbed was created using Python to provide independéhtvi@ual devices, simu-
lators, and logging devices. The virtual devices are abt®tdrol simulated processes, as
well as communicate with each other, the simulator, and actinal ICS devices. Virtual
devices are capable of supporting many more protocols tresetimplemented, which in-
clude Modbus/TCP and Modbus/RTU. Simulators approximatelated processes based

on control inputs from the virtual devices. Logging devieese developed to create faith-
120

www.manaraa.com

ful captures of virtual system traffic, and also emulate taagmission characteristics of
the medium.

Two virtual testbeds emulating laboratory scale ICS wenreliped, and traffic and
behavior of these testbeds were compared to their labgrabomterparts. Virtual testbed
behavior was verified quantitatively and by interoper#piesting with laboratory equip-
ment. Of the two, interoperability testing is more impottaecause the end goal is a
testbed that provides ICS functionality to researcherswéder, quantitative measures
that verify virtual testbed similarities provide assurasto researchers about which sys-
tem features are nearly identical or indistinguishablenfiepreal system, or those which
may have some variance from an actual system. Where vasiamegresent, researchers
will know to exercise caution when developing and testingtsans that rely on the vary-
ing features. While we can show interoperability and stiaaémeasures of system simi-
larity, there is no existing work that sets a benchmark fav Bonilar the system must be
to be useful. For our initial implementation of testbeds,hage aimed for 90% or better
similarity metrics in network traffic, perfect interopeii#ly with real equipment, and sim-
ilar behavior under attack. While 90% was selected arligramly future work that uses
the testbed will be able to determine if this level of simthars sufficient.

The testbed masters and slaves were found to be interopevéhlreal ICS commu-
nications equipment and real devices. The virtual and ktboy testbeds were subjected
to three attacks, and the two testbeds exhibited similatygh not exact behavior. Quan-
titatively, the first testbed (the ground tank) proved toehgreater than 90% similarity in
the discussed similarity metrics in the two operation maeéseted. The second testbed,

121

www.manaraa.com

the pipeline, showed greater than 90% similarity in all bub defined metrics in both
operating modes ; two of these metrics will likely be impravwy better timing calibration

in future work.

8.2 Future work

There are several natural extensions of this work. Firsgpasitory for storing cap-
tures is necessary to organize contributed captures frbord#ory and virtual testbeds.
The repository should hold both the capture and searchaéladata, including descrip-
tions of the captured activity and source attribution. Aidaially, access to attack cap-
tures should be limited to trusted and vetted researcherorfsl, several researchers have
outlined attack taxonomies against common ICS protocatsuding Modbus and DNP3
[29, 42, 41, 26]. Attacks described in these taxonomieslghoei run against the virtual
systems to generate attack captures for the repositoryd,Thore testbed systems should
be developed to exercise the flexibility in the testbed fraork. Testbeds should be de-
veloped that provide more protocol diversity, integratéhvhigher-fidelity commercial
simulation systems, and model much larger systems. Layg¢erss may be verified by
partnering with industry. Fourth, a hardware interfacén®gimulator would allow the use
of device discrete analog and digital inputs and outputpdining actual ICS devices with
a simulated process. Such an interface will likely take tivenfof a microcontroller that
provides discrete analog and digital input and outputs ¢odiwvice. Input values would
be read and sent to the simulator over a serial port or othmmamication scheme, while

outputs from the microcontroller would be set by the values/pled by the simulator.

122

www.manaraa.com

Finally, the unique paradigm of ladder logic in PLC programgnmakes translating lad-
der logic into traditional programming languages like C gth®n difficult. A library or
domain-specific language for describing ladder logic in gwn high-level languages like

C, Java, or Python would aid in developing new testbed deyiegramming.

123

www.manharaa.com

REFERENCES

[1] “KDD Cup 1999 Data,” http://kdd.ics.uci.edu/databsieldcup99/kddcup99.html.

[2] “n.runs AG - BTCrack Bluetooth PIN Cracker,”
http://www.nruns.com/security _tools_btcrack.php.

[3] “SCADA IDS/IPS,” http://lwww.digitalbond.com/indeghp/research/scada-idsips/.
[4] “trifinite.org - long distance snarfing,” http://trifite.org/trifinite_stuff_Ids.html.

[5] IEEE 802.11 wireless network protocol DSSS CCA algorithimerable to denial of
service Tech. Rep. VU#106678, US-CERT, May 2004.

[6] ZigBee Primer Tech. Rep., Daintree Networks, Feb. 2008.
[7] Zigbee SpecificatignTech. Rep. 053474r17, Zigbee Alliance, Jan. 2008.

[8] Critical Infrastructure Protection Reliability StandasdTech. Rep. CIP 002-3 - 009-
3, North American Electric Reliability Corporation, De@®.

[9] M. S. Ahmad, “WPA Too!,” DefCon, 2010.
[10] M. Andersson, “Industrial Bluetooth,” 2001.
[11] B. Antoniewicz,802.11 AttacksTech. Rep., Foundstone Professional Services.

[12] N. Athanasiades, R. Abler, J. Levine, H. Owen, and GeWil“Intrusion detection
testing and benchmarking methodologidaformation Assurance, 2003. First IEEE
International Workshop qr2003, pp. 63—72.

[13] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaram and B. Thapa, “On
the Performance of IEEE 802.11 under Jamming008 IEEE INFOCOM - The
27th Conference on Computer Communicatjd?soenix, AZ, USA, Apr. 2008, pp.
1265-1273.

[14] Beetle and B. Potter, “Rogue AP 101 - Threat, Detect®Defense,” 2003.

[15] J. Bellardo and S. Savage, “802.11 Denial-of-Servitaéks: Real Vulnerabilities
and Practical Solutions,” USENIX Security, 2003.

[16] D. C. Bergman,Power grid simulation, evaluation, and test framewoidaster’'s
thesis, University of lllinois, Urbana-Champaign, IL, M2§10.

124

www.manaraa.com

[17] M. Bristow, “ModScan,” 2008.

[18] J. Brodsky and A. McConnell, “Jamming and Interferehwuced Denial of Service
Attacks on IEEE 802.15.4 Based Wireless Networks,” SCADAUBty Scientific
Symposium, 20009.

[19] S. T. Brugger, “KDD Cup '99 dataset considered harmful,
http://mww.bruggerink.com/~zow/GradSchool/KDDCupSghhful.html.

[20] S. T. Brugger,The Quantitative Comparison of Computer Networkectoral dis-
sertation, University of California, Davis, Davis, CA, 200

[21] M. Brundle and M. Naedele, “Security for Process Conigstems: An Overview,”
Security & Privacy, IEEEvol. 6, no. 6, 2008, pp. 24-29.

[22] A. Cardenas, S. Amin, and S. Sastry, “Research Chaderigr the Security of
Control Systems,” USENIX Workshop on Hot Topics in Securi§an Jose, CA,
2008.

[23] R. Chabukswar, B. Sinpoli, G. Karsai, A. Giani, H. Neeraad A. Davis, “Simu-
lation of Network Attacks on SCADA SystemsFirst Workshop on Secure Control
SystemsStockholm, Sweden, Apr. 2010.

[24] S. Cheung, B. Dutertre, M. Fong, U. Lindgvist, K. Skinnand A. Valdes, “Using
Model-based Intrusion Detection for SCADA NetworkBfoceedings of the SCADA
Security Scientific SymposiuMiami, FL, 2007, Digital Bond.

[25] K. Das, Attack Development for Intrusion Detection EvaluatioBachelor, MIT,
2000.

[26] S. East, J. Butts, M. Papa, and S. Shenoi, “A Taxonomy ttdicks on the DNP3
Protocol,” Critical Infrastructure Protection I} vol. 311, 2009, p. 67.

[27] K. Finistere, “Theft of Bluetooth Link Keys for Fun and rdfit?,”
http://www.digitalmunition.com/TheftOfLinkKey.txt.

[28] K. Finistere and T. Zoller, “Bluetooth Hacking Revisit,” Dec. 2006.

[29] T. Fleury, H. Khurana, and V. Welch, “Towards A Taxonof@f/Attacks Against En-
ergy Control Systems Critical Infrastructure Protection || M. Papa and S. Shenaoi,
eds., vol. 290 ofFIP International Federation for Information Processingpringer
Boston, 2009, pp. 71-85, 10.1007/978-0-387-88523-0_6.

[30] S. R. Fluhrer, I. Mantin, and A. Shamir, “Weaknessesha Key Scheduling Al-
gorithm of RC4,” Revised Papers from the 8th Annual International Workshop o
Selected Areas in Cryptograpt3001, pp. 1-24, Springer-Verlag.

125

www.manaraa.com

[31] I. Fovino, M. Masera, L. Guidi, and G. Carpi, “An expeemtal platform for assess-
ing SCADA vulnerabilities and countermeasures in powentsld Human System
Interactions (HSI), 2010 3rd Conference, @10, pp. 679-686.

[32] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta, edign and Implemen-
tation of A Secure MODBUS Protocol Critical Infrastructure Protectionvol. I,
2009.

[33] W. Gao, T. Morris, B. Reaves, and D. Richey, “On SCADA @ohSystem Com-
mand and Response Injection and Intrusion DetectidBEE eCrime Researchers
SummitDallas, TX, Oct. 2010.

[34] A. Giani, G. Karsai, T. Roosta, A. Shah, B. Sinopoli, ahdViley, “A testbed for
secure and robust SCADA system&4th IEEE real-time and embedded technology
and applications symposium (RTAS’08) WIP sesslaly 2008.

[35] T. Goodspeed, D. Highfill, and B. Singletary, “Low-léu@esign Vulnerabilities
in Wireless Control Systems Hardware SCADA Security Scientific Symposjum
Miami, FL, 2009.

[36] D. Grzelak, “SCADA Penetration Testing: Hacking ModbEnabled Devices,”
2008.

[37] K. Haataja,Evaluation of the Current State of Bluetooth Securitycentiate, Uni-
versity of Kuopio, Finland, Jan. 2007.

[38] H. Hadeli, R. Schierholz, M. Braendle, C. Tuduce, andO®ermeier, “Leverag-
ing Determinism in Industrial Control Systems for Advana&gomaly Detection
and Reliable Security ConfigurationProceedings of the 14th IEEE international
conference on Emerging technologies & factory automathallorca, Spain, Sept.
20009.

[39] A. Hahn, B. Kregel, M. Govindarasu, J. Fitzpatrick, Rd#an, S. Sridhar, and
M. Higdon, “Development of the PowerCyber SCADA securitgtbeed,” Proceed-
ings of the Sixth Annual Workshop on Cyber Security and tm&ion Intelligence
Research - CSIIRW '1@ak Ridge, Tennessee, 2010, p. 1.

[40] F. Halvorsen, O. Haugen, M. Eian, and S. Mjolsnes, “Aptoved Attack on TKIP,”
Identity and Privacy in the Internet Ag2009, pp. 120-132.

[41] P.Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Atfeakonomies for the Modbus
Protocols,” International Journal of Critical Infrastructure Proteicin, vol. |, Aug.
2008, pp. 37-44.

[42] V. Igure, Security assessment of SCADA protocols : a taxonomy bagedaotogy
for the identification of security vulnerabilities in SCAIpfotocols VDM Verlag
Dr. Muller, Saarbrucken, 2008.

126

www.manaraa.com

[43] K. Kendall, A Database of Computer Attacks for the Evaluation of IntsndDetec-
tion SystemsMaster, MIT, 1999.

[44] T. Kennedy and R. Hunt, “A Review of WPAN Security: Att@cand Prevention,”
The International Conference on Mobile Technology, Agpilans & Systemdlan
Taiwan, Sept. 2008.

[45] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, BicClung, D. Weber,
S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissmawaltkting intru-
sion detection systems: the 1998 DARPA off-line intrusiatedtion evaluation,”
DARPA Information Survivability Conference and Expositia000. DISCEX '00.
Proceedings2000, vol. 2, pp. 12—-26 vol.2.

[46] M. Majdalawieh, F. Parisi-Presicce, and D. WijesekefaNPSec: Distributed Net-
work Protocol Version 3 (DNP3) Security FrameworKiventy-First Annual Com-
puter Security Applications Conference (Technology Bégsion)2005.

[47] K. Masica, Securing ZigBee Wireless Networks in Process Control ByEtaviron-
ments (DRAFT)Tech. Rep., Lawrence Livermore National Laboratory, 2007.

[48] R. W. McGrew and R. B. Vaughn, “Discovering vulneratids in control system
human-machine interface softward@durnal of Systems and Softwavel. 82, no. 4,
Apr. 2009, pp. 583-589.

[49] J. McHugh, “Testing Intrusion detection systems: diquie of the 1998 and 1999
DARPA intrusion detection system evaluations as perforiyedncoln Laboratory,”
ACM Transactions on Information and System Secwity 3, no. 4, Nov. 2000, pp.
262-294.

[50] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissmafin Overview of Issues
in Testing Intrusion Detection System3ech. Rep. NIST IR 7007, NIST/Lincoln
Laboratory, 2002.

[51] J. Montague, “Simulation Breaks OuControl Global Sept. 2010, pp. 52-61.

[52] R. Moskowitz, “Weakness in Passphrase Choice in WPAerfate,
http://wifinetnews.com/archives/2003/11/weaknesassphrase_
choice_in_wpa_interface.html, Nov. 2003.

[53] T. Ohigashi and M. Morii, “A Practical Message Falsificm Attack on WPA,"Joint
Workshop on Information Securjtgug. 2009.

[54] M. Organization,Modbus Application Protocol Specification V1,Ibec. 2006.

[55] M. OrganizationModbus Messaging on TCP/IP Implementation Guide V,1(.
2006.

127

www.manaraa.com

[56] V. Pothamsetty and M. Franz, “SCADA HoneyNet ProjecttilBing Honeypots for
Industrial Networks,” http://scadahoneynet.sourcegangt/.

[57] N. Puketza, M. Chung, R. Olsson, and B. Mukherjee, “Atwafe platform for
testing intrusion detection system§pftware, IEEEvol. 14, no. 5, 1997, pp. 43-51.

[58] N. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. GisSA methodology for
testing intrusion detection systemsEEE Transactions on Software Engineerjing
vol. 22, no. 10, Oct. 1996, pp. 719-729.

[59] C. Queiroz, A. Mahmood, J. Hu, Z. Tari, and X. Yu, “Buitdj a SCADA Security
Testbed,”"Network and System Security, 2009. NSS '09. Third IntesnatiConfer-
ence on2009, pp. 357-364.

[60] M. J. Ranum,Experiences Benchmarking Intrusion Detection Systelash. Rep.,
Dec. 2001.

[61] S. Raza,Secure Communication in WirelessHART and its Integratiih aegacy
HART, Tech. Rep. 3799, Swedish Institute of Computer Scienct).20

[62] S. Raza, A. Slabbert, T. Voigt, and K. Landernas, “Siguwonsiderations for the
WirelessHART protocol, 2009 IEEE Conference on Emerging Technologies & Fac-
tory AutomationPalma de Mallorca, Spain, Sept. 2009, pp. 1-8.

[63] B. Reaves and T. Morris, “Discovery, Infiltration, an@al of Service in a Process
Control System Wireless NetworkgCrime Researchers Sumpiiacoma, WA, Oct.
2009.

[64] R. Reddi and A. Srivastava, “Real time test bed develepior power system
operation, control and cyber securityNorth American Power Symposium (NAPS),
201Q 2010, pp. 1-6.

[65] T. Roosta, D. Nilsson, U. Lindgvist, and A. Valdes, “Amiusion detection system
for wireless process control systemdylobile Ad Hoc and Sensor Systems, 2008.
MASS 2008. 5th IEEE International Conference 2008, pp. 866—872.

[66] N. K. Sastry and D. Wagner, “Security Considerationd EE 802.15.4 Networks,”
ACM Workshop on Wireless Security, Oct. 2004.

[67] Y. Shaked and A. Wool, “Cracking the Bluetooth PIN1,"a®é&, WA, June 2005.

[68] R. Silvaand S. Nunes, “Presentation: Security Issmegigbee,” INESC Seminario
da Rede Tematica de Comunicacoes Moveis, July 2005.

[69] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and Rvatt, “Wire-
lessHART: Applying Wireless Technology in Real-Time Intfied Process Control,”
2008 IEEE Real-Time and Embedded Technology and Applitsaymposiunstt.
Louis, MO, USA, Apr. 2008, pp. 377-386.

128

www.manaraa.com

[70] Y. Song, C. Yang, and G. Gu, “Who is peeping at your pasdwat Starbucks? To
catch an evil twin access point,Dependable Systems and Networks (DSN), 2010
IEEE/IFIP International Conference 912010, pp. 323-332.

[71] R. Speers and R. Melgares, “ZigBee Security: Find, Firjsh,” Jan. 2011.

[72] N. Svendsen and S. Wolthusen, “Using Physical Model#Aftomaly Detection in
Control Systems,Critical Infrastructure Protectionvol. 311, 2009, pp. 139-149.

[73] E. Tews and M. Beck, “Practical attacks against WEP ariRRAW WiSec '09: Pro-
ceedings of the second ACM conference on Wireless netwoukitye New York,
NY, USA, 2009, ACM.

[74] E. Tews, R. Weinmann, and A. PyshkirBreaking 104 bit WEP in less than 60
secondsTech. Rep. 2007/120, 2007.

[75] A. Valdes and S. Cheung, “Communication pattern angrdakection in process
control systems,”2009 IEEE Conference on Technologies for Homeland Security
Waltham, MA, USA, May 2009, pp. 22-29.

[76] A. Valdes and S. Cheung, “Intrusion Monitoring in PreseControl Systems Pro-
ceedings of the 42nd Hawaii International Conference one®yscience0009.

[77] G. Vigna, W. Robertson, and D. Balzarotti, “Testingwetk-based intrusion de-
tection signatures using mutant exploit®foceedings of the 11th ACM conference
on Computer and communications secyritjashington DC, USA, 2004, pp. 21-30,
ACM.

[78] K. Wang and S. J. Stolfo, “Anomalous payload-based ndtvintrusion detection,”
2004, pp. 203—222.

[79] J. Wright, “Asleap,” http://www.willhackforsushican/?page_id=41, May 2008.

[80] J. Wright, “eapmd5pass,” http://www.willhackfordusom/?page_id=67, Feb.
2008.

[81] J. Wright, “Presentation: KillerBee: Practical ZigB&xploitation Framework,”
ToorCon 11, Oct. 2009.

[82] J. Wright and B. Antoniewicz, “PEAP: Pwned ExtensiblatAentication Protocol,”
2008.

[83] D. Yang, E. Usynin, and J. W. Hines, “Anomaly-Based uision Detection for
SCADA Systems,”5th International Topical Meeting on Nuclear Plant Instrem
tation, Control and Human Machine Interface Technologfouquerque, NM, Nov.
2006.

[84] S. Zanero, “Flaws and frauds in the evaluation of IDS/tiechnologies,”FIRST
2007, 2007.

129

www.manaraa.com

APPENDIX A

TIMING CALIBRATION

130

www.manharaa.com

By default, the vdevs cannot predict all the delays inhemremidustrial control sys-
tem processing. Even very similar systems, using the samtkvhee, can take varying
amounts of time to run. However, for faithful traffic genévat timing delays in the vir-
tual system will need to be similar to delays in actual sysbemg modeled, regardless
of host system performance. Modern hardware can (in gérfeaatlle the computational
burden of process control and communication much faster ¢gheypical PLC. This is
fortunate, as the virtual testbed code does not have to bmiaptl to compete, but de-
lays must be added that mimic the actual industrial conyrsiesn timing. The following
describes a process for calibrating the virtual ICS to embigh-fidelity timing between
system events. This methodology uses the similarity ngetnentioned above, to inform

the changes that must be made and to verify the results.

A.1 Timing calibration method for ModbusRTU systems

Timing in ModbusRTU systems is governed primarily by fouctéas: communica-
tions delay, request programming, message processing, dgld master program scan
time.

Measured communications delay is mainly governed by thialdeaud rate, but is
also greatly affected by the logging strategy. If storesfand-type logging is used for
the system trace, where a device reads a full packet from eviealbefore relaying it to
another, packet delays in the trace will be roughly doubéelihud rate delay, and also
double the time that the packets would require without lnggif a serial tap cable is used

to collect the data from the actual system, the communicati@lay will be roughly equal

131

www.manaraa.com

to the baud rate. If virtual devices are connected via playskrial ports at the same speed
as the physical system, no delay should need to be addeddardador communications
delay. If the virtual devices are connected through a Pggleo instance or other virtual
serial port connection, delay will need to be introduced uwadly in the PortLogger —
waiting the byte transmit time multiplied by the length oétpacket to transmit a packet
after receiving it is a good approximation of this delay. &ese the it affects all packets
roughly equally, communication delay it should be the fiedtgt added before correcting
other features.

Request programming describes how many requests a mastisriaea program scan;
a master may send no requests or many requests per prograpbatén ModbusRTU
one request must be completed (or time out) before anotheest can begin. The timing
resulting from a system that sends 2 requests per programsdéferent from a system
than only sends 1 request per program scan, because proggardeday tends to be much
greater than response processing delay. Both the RegegsieBt and Response-Request
timing are affected by the request programming. These ifesttonay be made more ac-
curate by ensuring that vdev program logic mirrors the dafeaice logic as much as
possible. If the programming is incorrect, some requestsypill appear to take less time
than others in one trace, but not another; if the requestranagning is correct, no steps
will need to be taken to add delays for this feature. This candrified by ensuring that
the distributions for request-response time and respoetagest time are roughly the same

shape when comparing a virtual and actual system.

132

www.manaraa.com

Message processing delay is the amount of time taken inviegeiprocessing and
sending a response to a request packet. This is a main sduheetoning differences be-
tween requests and responses — and, by extension, the +alastemterarrival time. This
delay is best accounted for in the protocol server befordiagra response to a request;
adding a delay between formulating a response and sendiges$ponse is effective at
improving this metric. This factor should be adjusted befadjusting the master program
scan time.

Master program scan time is the amount of time that passes drte invocation of
the master process control logic to the next. This is a maarce of the timing from
master request to master request. Because the master-maste is the primary metric
for determining this value, and other delays (especiakyréquest-response timing) can
also affect that metric, this should be the final feature taoeéified.

The calibration process makes use of timing hooks placeditrout the virtual device
code. The calibration process can be described simply ifotlosving steps:

1. Ensure correct virtual device process control programypparticularly with respect
to how often messages should be sent.

2. Ensure correct communications delay. If virtual commanons links are used (like
the PortLogger virtual serial port), delay will need to beled that is appropriate to
the communications settings (baud rate, start/stop bitsparity in serial systems).

3. Adjust message processing delay by adding delay in the slassage handler hook
to change the master-slave interarrival time distributbdrthe virtual testbed to
match the laboratory system’s master-slave distribution.

4. Adjust master program scan time by adding delay in the enggbgram hook to
change the master-master interarrival time distributidh@virtual testbed to match
the laboratory system’s master-master interarrival ithistion.

5. If similarity is not sufficient, return to step 1 and repe#th better approximations
for delays.

133

www.manaraa.com

For steps 3 and 4, the delay to be added will probably not bate stalue; rather, it
will be a random value based on the distribution of intevairtimes in the laboratory
system. This delay may be modeled by a single linear appatiom taken between the
highest and lowest points, a piecewise linear approximatoa more complicated func-
tion. This modeling is basically a problem of finding the bestve fit; computational
tools like NumPy or Matlab may be helpful for this. Deternmgisufficiency of the result-
ing similarity scores will be application-specific; this tkaaims for 90% similarity in all

metrics.

A.2 Calibration Example: Ground Tank System

This subsection details the calibration of the virtual iexpentation of the Ground
Tank system in MSU’s ICS Research Lab. The virtual systeneisgpsimulated on an
Ubuntu Linux system with an Intel Core2 Duo P8700 (2.53GHithwGB of RAM. The
virtual system is running as individual processes; the sd&e connected by a Python
virtual serial port emulator, and the process simulator momications are carried over

UDP.

A.2.1 Initial Similarity Scores

Table A.1 shows the initial similarity scores before addingng delays. It should be
noted that, with the exception of the byte frequency metadisnon-time-based metrics
are above 99% similarity. However, the timing based metndsich include both the

interarrival and the throughput metrics, are between 3083%4.

134

www.manaraa.com

Table A.1

Ground Tank Initial Similarity Scores

Name | Similarity | Average Error| Max. Error | Percent Error]
Byte Frequency 0.43937 | 0.00115 0.02696 -0.000%
Byte Throughput| 0.81918 | -64.31988 -64.31988 | 44.145%
Error Count| 1.00000 | - - -
Function Code Count 1.00000 | 0.00000 0.00000 0.000%
Function Code Sequenge0.99997 | - - -
ID Sequenceg 0.99997 | - - -
Interarrival Time | 0.62784 | 0.03977 0.18990 -30.622%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.83044 | 0.07520 0.22098 -30.612%
Master-Master Interarrival Time (Read)0.82243 | 0.14705 0.28048 -30.588%
Master-Master Interarrival Time (Write]) 0.82218 | 0.14712 0.23618 -30.605%
Master-Slave Interarrival Metric (Read)0.30383 | 0.03829 0.05414 -82.306%
Master-Slave Interarrival Metric (Write) 0.46244 | 0.02098 0.06054 -70.890%
Master-Slave Interarrival Tim¢ 0.38061 | 0.02957 0.07783 -77.877%
Packet Sizel 1.00000 | 0.00000 0.00000 0.000%
Packet Throughput 0.81918 | -3.67542 -3.67542 | 44.145%
Slave-Master Interarrival Metri¢ 0.87511 | 0.05002 0.18990 -21.748%
Slave-Slave Interarrival Tim¢ 0.82935 | 0.07375 0.22004 -30.611%

A.2.2 Communications delay

Adding a correct communications delay to the simulatedesgstignificantly improves
the timing metrics; in the case of the ground tank, this takedorm of baud rate delay.
Improvements of 3% similarity in slave-master interarriva to an additional 44% simi-
larity in the case of master-slave interarrival time aransedable A.2. This improvement
is owed to the fact that the baud rate delay restricts thadbry system’s throughput and
minimum response times, and similarly limits the virtuast®m’s timing.

The baud rate delay added is described by the fundbi@iay = lengthiyies-10bits /byte-

The factor of 10 represents the fact that 8 data bits arertrigiesi along with 1 start bit

135

www.manaraa.com

and 1 stop bit; other serial port configurations (like 2 stdp br parity checking) may

require adjustments to this factor.

Table A.2

Ground Tank Similarity Scores After Adding Baud Rate Delay

Name | Similarity | Average Error| Max. Error | Percent Error]
Byte Frequency 0.38323 | 0.00118 0.02687 -0.000%
Byte Throughput| 0.91498 | -27.07712 -27.07712 | 18.584%
Error Count| 1.00000 | - - -
Function Code Count 0.99995 | 0.00005 0.00045 0.000%
Function Code Sequenge0.99957 | - - -
ID Sequenceg 0.99998 | - - -
Interarrival Time | 0.86484 | 0.02510 0.16736 -15.673%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time¢ 0.88865 | 0.05310 0.18463 -15.667%
Master-Master Interarrival Time (Read)0.91759 | 0.07554 0.21246 -15.636%
Master-Master Interarrival Time (Write) 0.91733 | 0.07564 0.16387 -15.659%
Master-Slave Interarrival Metric (Read)0.52760 | 0.02996 0.04594 -64.683%
Master-Slave Interarrival Metric (Write) 0.83769 | 0.01026 0.02877 33.207%
Master-Slave Interarrival Time 0.82699 | 0.01015 0.04860 -26.738%
Packet Size| 0.99998 | 0.00090 2.00000 -0.005%
Packet Throughput 0.91495 | -1.54777 -1.54777 | 18.590%
Slave-Master Interarrival Metric 0.90248 | 0.04011 0.16736 -13.593%
Slave-Slave Interarrival Time¢ 0.91901 | 0.03880 0.16870 -15.665%

A.2.3 Message Processing Delay

Modeling processing delay is less straight-forward thamdbeate emulation as pro-
cessing delays are not uniform across all packet types. résgf.1 and A.2 show the
sorted request-response interarrival times for the twedypf requests in this system:
write and read requests, respectively. Figure A.1 showsmtie command times for

the laboratory system (red) and the virtual system(blue)this one particular case, the

136

www.manaraa.com

virtual request-response times are actually equal or tyigjreater than the laboratory
times. Clearly, adding delay in this case will not help. Huer as the system stands,
this gives greater than 80% similarity with no action takBy.contrast, Figure A.2 shows
the request-response times for the laboratory, the visygtem, and the difference (error)
in the two values. Here, a delay in the virtual system respamsequired to improve the
similarity scores; the amount of the delay can be determiryean approximation of the
difference curve. The approximation of this differenceveuwill be need to be determined
on a case-by-case basis. Here, as the difference curveis/gge and somewhat linear, the
delay can be modeled as a linear approximation with the aggtitveing a random value
on the interval0, 1). Specifically, this function iglelay = 0.0238522 % = 4+ 0.0200725
wherez is a random number from 0 to 1. This delay is added as a hook talbe by
the Modbus server instance immediately before sendingens®; this hook only applies
the delay in the event that the response is a read respontie saite request timing is
unaffected. The resulting distribution is shown in Figur 8. The resulting similarity

metrics are given in Table A.3.

A.2.4 Master Program Scan Time

Master program scan time delay modeling is simpler than agesprocessing delay
because the request type has almost no influence over thigytieature. The Master-
Master Interarrival Time metric shows best the effects isf fiature; Figure A.4 shows the
distribution of interarrival times; the laboratory systenshown in red, the virtual system

in blue, and the difference (error) between the two distidns in green. In this case,

137

www.manaraa.com

0.10

0.09

0.08

Time (s)

0.03

0.02

0. Db

— Laboratory System
-| — Virtual System :
_]
———"_—/-‘_——_
0 0.2 0. 0.6 0.8 1.0

Normalized measurement number

Figure A.1

Master-Slave Interarrival Distribution (Write Command)

138

www.manharaa.com

0.07

Laboratory System
— Virtual System
Error

0.06 -

0.05

0.03

0.02

0.0ho '

0.4 0.6 0.8 1.0
Normalized measurement number
Figure A.2

Master-Slave Interarrival Distribution (Read Command)

139

www.manharaa.com

0.065 T T T T

—— Laboratory System
— Virtual System

0.060

0.055

0.050

Time (s)

0.045

0.040

0.035

1 1 1 Il
0'03%.(} 0.2 0.4 0.6 0.8 1.0

Normalized measurement number

Figure A.3

Master-Slave Interarrival Distribution (Read) After Pessing Delay

140

www.manharaa.com

Table A.3

Ground Tank Similarity Scores After Message Processingyel

Name | Similarity | Average Error| Max. Error | Percent Error]
Byte Frequency 0.31821 | 0.00153 0.05530 -0.000%
Byte Throughput| 0.95151 | -14.83768 -14.83768 | 10.191%
Error Count| 1.00000 | - - -
Function Code Count 0.99995 | 0.00005 0.00042 0.000%
Function Code Sequenge0.99957 | - - -
ID Sequenceg 0.99999 | - - -
Interarrival Time | 0.91319 | 0.02239 0.15960 -9.255%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Time 0.91232 | 0.04218 0.14826 -9.264%
Master-Master Interarrival Time (Read)0.94973 | 0.04832 0.12426 -9.213%
Master-Master Interarrival Time (Write) 0.95048 | 0.04765 0.12407 -9.252%
Master-Slave Interarrival Metric (Read)0.98309 | 0.00843 0.02740 0.189%
Master-Slave Interarrival Metric (Write) 0.85697 | 0.00962 0.03963 26.764%
Master-Slave Interarrival Tim¢ 0.92414 | 0.00492 0.03506 10.619%
Packet Sizel 0.99998 | 0.00088 2.00000 -0.005%
Packet Throughput 0.95149 | -0.84831 -0.84831 | 10.197%
Slave-Master Interarrival Metri¢ 0.90222 | 0.03988 0.15960 -13.146%
Slave-Slave Interarrival Tim¢ 0.93182 | 0.03385 0.15883 -9.252%

the virtual system interarrival times are nearly constant] roughly 40% of the virtual

master-master interarrival times are greater than thedaty. In this case, delay should

be added only for the 60% of cases where the error is posifikie.additional delay can
(

0 r <04

be modeled by the piecewise functidalay =

0.03265 0.4 < 2 < 0.835 Wherez

0.61234-x x> 0.835
is a random number from 0 to 1. Table A.4 gives the final reatkanilarity scores.

141

www.manaraa.com

0.4 T T T T
— Laboratory System
— Virtual System
— Error
0.3}
0.2 i
)
Q
£
=
0.1
0.0 | .
i 1 Il | i
%% 0.2 0.4 0.6 0.8 1.0

Normalized measurement number
Figure A.4

Ground Tank Master-Master Interarrival Time Before Addidejay

142

www.manharaa.com

0.40

0.35

0.30

0.10

0.05

0. El'%.

Laboratory System

Virtual System

| |
0.4 0.6 0.8

Normalized measurement number

Figure A.5

Plot of Interarrival Distribution After Calibration

143

1.0

www.manharaa.com

Table A.4

Ground Tank Similarity Scores After Adjusting Master Scamé

Name| Similarity | Average Error|

Max. Error | Percent Error]

Byte Frequency 0.27601 | 0.00000 0.01613 -0.000%
Byte Throughput| 0.98493 | 4.32641 4.32641 -2.969%
Error Count| 1.00000 | - - -
Function Code Count 0.99996 | -0.00000 0.00032 0.000%
Function Code Sequenge0.99964 | - - -
ID Sequence 0.99995 | - - -
Interarrival Time| 0.93533 | 0.00366 0.06616 3.046%
Invalid CRC | 1.00000 | - - -
Master-Master Interarrival Tim¢ 0.94912 | 0.00731 0.07220 3.038%
Master-Master Interarrival Time (Read)0.98324 | 0.01480 0.12166 3.076%
Master-Master Interarrival Time (Write) 0.98385 | 0.01476 0.11869 3.069%
Master-Slave Interarrival Metric (Read)0.97891 | 0.00168 0.02378 3.547%
Master-Slave Interarrival Metric (Write) 0.84308 | 0.00925 0.02416 31.558%
Master-Slave Interarrival Time 0.91356 | 0.00548 0.01950 14.420%
Packet Size| 0.99999 | -0.00083 0.00000 -0.004%
Packet Throughput 0.98495 | 0.24693 0.24693 -2.966%
Slave-Master Interarrival Metric 0.95694 | 0.00183 0.08783 0.904%
Slave-Slave Interarrival Time 0.96789 | 0.00731 0.08484 3.039%

144

www.manaraa.com

	An open virtual testbed for industrial control system security research
	Recommended Citation

	thesis.dvi

